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Abstract— In this work, we address the problem of providing
human-assisted quadrotor navigation using a set of eye tracking
glasses. The advent of these devices (i.e., eye tracking glasses,
virtual reality tools, etc.) provides the opportunity to create
new, non-invasive forms of interaction between humans and
robots. We show how a set of glasses equipped with gaze tracker,
a camera, and an Inertial Measurement Unit (IMU) can be
used to (a) estimate the relative position of the human with
respect to a quadrotor, and (b) decouple the gaze direction
from the head orientation, which allows the human to spatially
task (i.e., send new 3D navigation waypoints to) the robot in an
uninstrumented environment. We decouple the gaze direction
from head motion by tracking the human’s head orientation
using a combination of camera and IMU data. In order to detect
the flying robot, we train and use a deep neural network. We
experimentally evaluate the proposed approach, and show that
our pipeline has the potential to enable gaze-driven autonomy
for spatial tasking. The proposed approach can be employed
in multiple scenarios including inspection and first response, as
well as by people with disabilities that affect their mobility.

I. INTRODUCTION

Multi-rotor Micro Aerial Vehicles (MAVs) such as quadro-
tors are very popular platforms due to their size, cost, ability
to hover in place, and navigate complex 3D environments,
all while providing diverse payload options. They can be
employed to help humans accomplish many useful tasks such
as exploration [1], inspection [2], mapping [3], interaction
with the environment [4], and search and rescue [5]. One
crucial trait that MAV systems that aim to achieve this vision
require is autonomy, e.g., the ability to operate without ex-
ternal infrastructure such as GPS or motion capture systems
that are typically absent from the environments where these
systems may be of the greatest use. While building MAVs
that exhibit more and more autonomy has indeed been the
subject of a great deal of research over the past decade,
autonomy alone is not sufficient for these systems to be
useful. In addition, MAVs must also be able to interact with
their human counterparts in effective ways.

The human-MAV interaction we are particularly concerned
with in this paper is that of spatial tasking, i.e., a human
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Fig. 1: A user wearing the Tobii Pro Glasses 2, where the
camera frame (red) and the IMU frame (purple) are both
attached to the glasses. The black reference frame denotes
the world fixed frame with z-axis is aligned to the gravity
direction, and the blue frame denotes the robot body frame.

tasking the MAV to navigate to or perform some other task
with respect to a particular spatial location (e.g. interact with
the environment or inspect an area). In current commercial
MAV systems, spatial tasking is accomplished either by the
human teleoperating the MAV, or by the human manually
specifying a GPS coordinate as a goal. Generally, neither of
these spatial tasking paradigms is desirable. In the former
case, the burden of teleoperation means that the human is
not able to perform other tasks, thus lowering the efficacy
of the team as a whole. The latter case is undesirable
because it relies on GPS availability and accuracy, and it
is often difficult for a human to translate a desired location
within their spatial field of view to a GPS coordinate in real
time. Taking advantage of the recent availability of accurate,
wireless, streaming, and on-head eye-tracking glasses (e.g.,
we use the Tobii Pro Glasses 2 [6] depicted in Fig. 1), we
believe that the use of human gaze information can be one
way to increase the effectiveness of human-MAV interactions
in human robot collaborative tasks.

Of inspiration to us in this context is the relative ease with
which human-human teams are able to accomplish this same



task. That is, two humans located in the same environment
are typically able to communicate quickly and efficiently
with one another regarding specific spatial locations using
several means of communication. Of particular to interest
to us here is the information provided by human gaze,
i.e., the current pointing direction of the eyes. Studies from
the psychology literature (e.g., [7], [8], [9]) have suggested
that there is a strong link between a human’s ability to
perceive where a human partner is looking and their ability
to infer that partner’s intention or goal toward a particular
object. The gaze information, despite pupils’ limited range
of motion, can complement, augment and possibly help to
predict human speech [10] and gesture actions [11] or to
disambiguate uncertain types of interactions [12], [13]. These
aspects suggest that gaze can contribute to, refine, and speed
up human-robot interaction tasks.

In this work, we take a first step toward enabling meaning-
ful human gaze processing in human-MAV teams for spatial
tasking. We consider a situation in which a human equipped
with an on-head device consisting of a gaze tracker, a camera,
and an inertial measurement unit (IMU) is co-located with a
MAV teammate in an otherwise uninstrumented environment.
Specifically, we propose solutions to several fundamental
sensor-processing issues that must be solved in order to
translate gaze information from the format of the head
sensor to a format that is of use to the MAV. Additionally,
we demonstrate a prototype system in which a human can
control a flying robot using their eye gaze. Our contributions
are:
• We provide a technique for decoupling gaze direction

from head attitude.
• We present a novel object-detection-based approach to

MAV localization in the human sensor frame.
These two techniques give us the ability to demonstrate, for
the first time, that an autonomous flying robot can be tasked,
in an uninstrumented environment, using gaze even when
the human is not in the robot’s field of view. Importantly,
our prototype system is lightweight and does not require
a ground station since the user carries only a small Jetson
TX2 module and the MAV navigates using on-board Visual
Inertial Odometry (VIO).

The paper is organized as follows. Section II introduces
the previous works in the field. Section III presents a system
overview of the main components. Section IV, presents
the proposed approach used to decouple head orientation
estimation from the human gaze, and how a neural network
is used to detect the drone (denoted in the following as
MAV, aerial robot/vehicle or simply robot) during flight.
In Section V, we evaluate our localization approach and
the sensor characteristics with respect to a motion capture
system. Finally, Section VI concludes the work and proposes
future development of scenarios that can be enabled by the
proposed pipeline.

II. RELATED WORK

A large part of the human-robot interaction (HRI) liter-
ature focuses on attentional mechanisms enabled by robots

with traits similar to humans, especially considering gaze.
An excellent survey on this topic is provided in [14]. Our
work addresses a different problem involving a sensor-
processing methodology, with the goal of enabling control
of an autonomous MAV using human gaze. The use of
aerial platforms closely collaborating with human operators
alongside humans in uninstrumented, fully 3D environments
presents a wide range of research challenges in HRI that
remain unsolved.

Previous approaches using human interaction to direct
MAVs in 3D space have largely focused on gestures. Gesture
modalities can include a dictionary of spatial gestures pre-
sented with colored gloves [15], using gesture “metaphors”
including pointing, mimicking joystick controls, mimicking
manipulation of the MAV as if it were within the human’s
grasp [16], and falconeering-inspired gestures [17]. Aug-
mented reality (AR) or virtual reality (VR) as an interaction
modality is of increasing interest as well, e.g., using head
position detected via the AR head-mounted-device (AR-
HMD) combined with hand gestures detected by the AR-
HMD camera [18]. The coupling between VR and drone for
control was analyzed in [19]. These previous efforts in AR
and VR for interaction employed instrumented environments
(e.g., motion capture or fiducials on agents and objects), with
the exception of [20], which used AR to interact with a
single ground robot in an uninstrumented environment. There
is also earlier work exploring using gaze for teleoperating
MAVs. In these works, though, gaze is always associated
with the head motion (and not eye pointing direction), which
is not always a valid assumption. It has been shown [21]
that the head orientation is not a good indicator of the
gaze direction, mainly because people orient to object with
saccades [22], especially when interacting with lateral ob-
jects. In [23] the authors used gaze gestures to allow a user
to teleoperate a drone via a screen and an eye tracking
interface (e.g., for translation - up, down, left, right - and
rotation). In [24], the authors took an interesting approach
to determine which two of the four degrees of freedom
when teleoperating a MAV could be best controlled via x-
y gaze movement, leaving the other two to be controlled
via keyboard. They found that rotation and speed controlled
by gaze and translation and altitude by keyboard were the
most reliable combination. Similar in spirit to this work, gaze
has recently been studied as a method by which passengers
might task autonomous vehicles for problems such as en-
route destination changing [25], [26]. Three works closely
related to our efforts are [27], [28], and [29]. In [27] the
authors use face orientation to calculate a projected trajectory
for a MAV to fly and facial expression to select between
trajectory types, whereas [28] employs a face-angle distance
plus gesture to direct MAV motion. In [29], the authors use
vision to add or remove robots from teams and gestures to
execute team behavior. In all these works, the gaze is again
associated with the head orientation. The decoupling between
human gaze and head orientation can be useful to direct a
MAV in 3D space in a more refined way.



Fig. 2: The proposed architecture for gaze-driven spatial task-
ing, with glasses sensors (light yellow box), ROS modules
(blue boxes) and autonomous vehicle (green box). The IMU
and camera provide inertial measurements (a,ω), and visual
features ft, for state estimation. The image It is used by the
drone detector to estimate the human/robot relative position.

III. SYSTEM OVERVIEW

In this section, we discuss the system hardware and
algorithm components of our pipeline. A detailed diagram
describing our pipeline is shown in Fig. 2. The framework
has been developed in ROS1.

A. Hardware Setup

Our novel system is based on the Tobii Pro Glasses 2,
a portable head mounted eye tracker, and a computation
unit, which is connected directly to the glasses. On the
Tobii Glasses, an outward-looking scene camera provides
25 Hz HD images and a built-in MEMS sensor provides
linear acceleration and angular velocity at ∼100 Hz. More
importantly, the glasses provide a gaze location estimation
(ug, vg)> on the image plane at 50 Hz. For the computation
unit, we use an NVIDIA Jetson TX2 as a portable platform
which provides both CPU and GPU for running the estima-
tion and detection algorithm online. For the MAV, we use a
250 g platform from our previous work [30].

B. Algorithm Pipeline

An Error-State Kalman Filter (ESKF) at 100 Hz is used
to process IMU data and estimate the attitude of glasses.
It is well-known that the full attitude cannot be recovered;
the yaw angle with respect to the reference frame will drift
over time due to unobservability. Therefore, given the relative
pose from the ESKF with two known orientation angles, we
use a vision-based, five point linear algorithm to compensate
for this yaw drift. To localize the drone in the glasses
camera’s field of view, we train and deploy a deep neural
network. The detection algorithm can process a single frame
in 330 ms on TX2, but we only perform detection during
gaze fixations (here, when the user’s gaze is fixed for more
than 200 ms on the image plane). Given a fixation, we use
the drone detector, and the system selects the drone if the
fixation location and drone location coincide. Once the drone
has been selected, we then estimate its position relative to the
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human based on the detector’s bounding box and the known
physical size of the agent. This position estimate, combined
with onboard drone odometry, is then used to estimate the
human’s position in the world reference frame. Finally, the
user can move his/her gaze somewhere else and virtually
select a navigation waypoint for the MAV.

IV. METHODOLOGY

In this section, we describe our approach to estimating the
head orientation using the glasses IMU and camera, which is
employed to compensate for yaw drift and detect the drone.

A. Notation

As shown in Fig. 1, we define the camera frame denoted
with C, the IMU frame denoted with I, the robot frame
denoted with R, and a world frame denoted with W . The
gaze is always defined in the C frame, whereas accelerometer
and gyro data in the frame I. Without loss of generality, to
simplify the notation, in the following we assume that the
IMU and camera frames are coincident. Their relative pose
is obtained with a calibration procedure detailed in [31]. The
notation RAB or qAB defines a rotation (expressed as matrix
R or quaternion q), which converts a point from the frame
B to the frame A.

B. Error-state Kalman filter

The head attitude is estimated using an Error-State Kalman
Filter (ESKF). The state is represented by

x =
[
qWI
>

b>ω

]>
, (1)

where qWI is the orientation of the frame I with respect to
the W frame expressed in quaternion form and bω is the
gyro bias. Given the orientation qWI , a rotation increment
δq from the current orientation gives a new orientation q̄ as

q̄ = qWI ⊗ δq = qWI ⊗
[

0
1
2δθ

]
, (2)

where δθ is the angle-axis difference between the estimated
attitude and the true one as specified in [32], and the operator
⊗ indicates the quaternion multiplication. It follows that the
IMU error-state is defined as

δx =
[
δθ> δb>ω

]>
. (3)

The error-state process model, as in [32], can be written as

˙δθ = −[ωm − bω]×δθ − δbω − ωn, ˙δbω = ηbω
, (4)

where the []× operator converts a vector into its correspond-
ing skew symmetric matrix. The variable ωn is the process
noise assumed to be Gaussian white noise, ηbω

is Gaussian
white noise as well since the gyro bias is modeled as random
walk process. The measured ωm angular rate is modeled as

ωm = ω + bω + ωn, (5)

where ω is the true angular rate. The process model is
discretized using a first order Euler integration scheme.
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In our pipeline, the measurement update is given by the
gravity acceleration expressed in the frame I as

z = qIW ⊗
[
0 0 0 g

]> ⊗ qIW + ηz, (6)

with g the gravity acceleration and ηz is the measurement
noise, which is assumed to be Gaussian. In the update step,
we use the extended Kalman filter equations and compute the
Jacobian of eq. (6) with respect to the error state in eq. (3).

C. Vision-based yaw estimation

As discussed in the last section, the ESKF is able to
provide an estimation of the relative orientation between the
I and W frames. However, using only an inertial sensor,
the approach would suffer from yaw drift. To mitigate the
effect of yaw unobservability, we use another measurement
to correct the drift. The front facing camera, as shown in
Fig. 1, allows us to form a camera-IMU system and fully
localize the head orientation. The yaw gets estimated using
a 5-points algorithm similar to [33]. Given two image frames
I1 and I2, we first extract FAST features [34] in the image
I1, and then track them in the second frame using the KLT
tracker [35]. We assume that the camera is calibrated, which
allows us to compensate for the distortion of tracked features
and use normalized image coordinates. We denote the set
of coordinates in image frames I1 and I2 with p1 and p2
respectively. We decompose the rotation matrix RI2

I1
into

Euler angle rotations using the convention Z-Y-X

RI2
I1

= RzRyRx, (7)

where Rz , Ry , and Rx are the rotation matrix along each
Cartesian axis, respectively. Ry and Rx can be estimated
from the ESKF. Let p̂1 denote the undistorted points p1
rotated by Ry and Rx. Then the epipolar constraint between
the two frames I1 and I2 can be expressed as

p>2 [t]×Rz(RyRxp1) = p>2 Ep̂1 = 0, (8)

where the essential matrix E = [t]×Rz in this case, has a
simpler form. Noticing its structure

E3,3 = 0, E1,2 = −E2,1, E1,1 = E2,2, (9)

we can rearrange eq. (8) with only 6 entries of E as

ae = 0, (10)

with
p̂1 = [x1, y1, z1], p2 = [x2, y2, z2] (11)

a =
[
x1x2 + y1y2 x1y2 + y1x2 x1z2 y1z2 z1x2 z1y2

]
(12)

e =
[
E1,1 E1,2 E1,3 E2,3 E3,1 E3,2

]>
. (13)

Selecting 5 points, we obtain a linear system in the form

Ae = 0, (14)

where we can find E looking to the A null space. To
guarantee that the matrix belongs to the essential matrix

space, we do a singular value decomposition of E obtaining
E′ as

E′ = U

1 0 0
0 1 0
0 0 0

V >. (15)

Finally, we decompose E′ to recover rotation R and trans-
lation t. Instead of projecting all points into 3D with all
four solutions, we compare our yaw angle estimate γ with
the prior from IMU and select the closest solution, which is
faster from a computational point of view. Then, γ can be
calculated as

γ = atan2(−E′1,1, E′2,1). (16)

To discard incorrect feature matchings, we use a 2-points
RANSAC outlier rejection scheme. Given angular velocity
ω ∈ R3 between frames from IMU, we obtain a rough
estimate of the rotation between I1 and I2 using a zero order
integration scheme via the exponential map [36]

RI1
I2

= expSO(3)(ω∆t), (17)

where ∆t is the time interval between the two image frames.
Since the device does not provide hardware synchronization
between the camera and IMU, we select the IMU values
between the two samples with closest timestamps with re-
spect to the two images. By applying rotation matrix RI1

I2
on

undistorted point set p̂1, p′2 = RI1
I2
p̂1, the relation between

p1 and p̂2
′ would only be a translation vector up to scale

p′2 = p1 + t, p′>2 [t]×p1 = 0. (18)

Using eq. (18), we can pick at least two corresponding
points to estimate the translation vector t = [tx, ty, tz]. The
estimation procedure is continuously repeated for incoming
images keeping I1 as the keyframe until a new one is
selected when the number of tracked features goes below
a given value or the yaw angle between two frames is larger
than a certain threshold. The outlier rejection step is always
performed between two consecutive frames.

D. Drone Detection

In order to select the agent in space with gaze and localize
the agent, we trained a deep neural network to detect drones.
Our goal is to obtain a real-time solution. For this reason,
we decided to use the lightweight yet accurate detection
algorithm Single Shot multibox Detector (SSD) described
in [37]. The main structure of our network is similar to the
original SSD, but with the advantage of having two classes
(drone or background) to train. The ith layer of the network
produces a feature map of size hi×wi×ci. For each feature
map, the network predicts the objects based on a set of
initial bounding boxes called anchor boxes. To customize
the network, we set the the default number of anchor boxes
to be k = 4, with aspect ratios (width/height) of {1, 2, 3, 4}.
These default boxes just serve as a set of initial guesses
and the network would predict final bounding boxes based
on these initial anchor boxes around each location of the
feature map. The maximum number of bounding boxes we



Fig. 3: Our system’s detection of a flying quadrotor in the
air. Using the parameters output from the network, we draw
the red bounding box in the image.
can have is then

∑
i k× hi ×wi. As our ultimate goal is to

localize the drone in the image and estimate its depth relative
to the camera, we add one more depth regression loss Ld in
eq. (20) to force the network to predict the correct bounding
box area. The training objective L consists of localization
loss Ll, confidence loss Lc, which are described in [37],
[38] and depth regression loss Ld

L =
1

N
(Lc(x, c) + αLl(x, p, g) + βLd(x, c, p, g)), (19)

Ld =
∑
i∈k

1(x = c)||dwi dhi exp (pwi + phi )− gwgh||2, (20)

where N is the number of matched proposal boxes, x is
the predicted category, c is the ground truth category, p
is the predicted bounding box parameters, g is the ground
truth bounding box parameters and d is the default proposal
boxes parameters defined in [37]. A sample detection result
is shown in Fig. 3. The network is trained on a dataset
with 1500 images with size 960 × 540 pixels each with
a ground truth bounding box. We augment the training
data by randomly cropping or resizing the images. The
Adam optimizer [39] is used with initial learning rate 0.001,
which is decayed exponentially by a factor of 0.94 every 2
epochs and clipped at 0.0001 during training. The weight on
localization loss, α, is set to be 0.1 and the weight on depth
regression loss, β, is set to 0.01. We trained a model with
batch size 16 on a 12 GB NVIDIA GeForce 1080 Ti GPU
for 150,000 iterations, which takes around 12 hours.

The detection pipeline is not launched until a gaze fixation
is detected. We use a dispersion-based algorithm (see, e.g.,
[40]) that decides a fixation has occurred when the standard
deviation of gaze points, σg , accumulated during a time
window of length ∆t, is less than a certain threshold σ0.
Once a fixation is detected, we crop a 300 × 300 image
centered at the gaze position and feed this image into our
detector. The cropping step turns out to be important for
robust detection as it reduces the image noise and rejects
potential false positives. In our experiment, we set σ0 to
be 10 pixels and ∆t to be 200 ms. Once the hovering
quadrotor is detected, we cross check the bounding box
position with the gaze to reject false positive predictions.
Given the quadrotor’s size Hq,Wq in meters, camera focal
length f , and network output bounding box with size h,w
in pixels, we compute the human/robot relative depth as

d = f

√
HqWq

hw
(21)

Fig. 4: Attitude estimation in Seq. 3. Ground truth (red),
ESKF (magenta), ESKF and vision (blue).

The depth could be underestimated due to a side view of
the quadrotor, but this can be easily compensated using
the known quadrotor yaw angle from odometry and camera
orientation. An alternative method is the additional 3D gaze
provided by the manufacturer, which is obtained by triangu-
lating detected pupils on human eyes. However, as pointed
out in [41], the accuracy is poor and would require the use
of additional external sensor suites for a reliable estimate.

V. EXPERIMENTAL RESULTS

In this section, we report on the experiments performed
at PERCH (Penn Engineering Research Collaboration Hub)
at the University of Pennsylvania. A Vicon2 motion capture
system is used to report ground truth data at 100 Hz as the
the attitude estimator and the drone detection algorithm is
running at 3 Hz on a NVIDIA Jetson TX2 module. The
overall pipeline runs on a portable platform so the user is
able to carry the device without requiring a ground station.
The top speed of the autonomous agent is set to be 2 m/s.

A. Sensor characterization

We first perform experiments to characterize the sensor
data and demonstrate the accuracy of the proposed technique.
In order to study the accuracy of attitude estimation described
in Sec. IV-B and Sec. IV-C, we evaluate our algorithm on 5
different sequences. The sequences were recorded with Tobii
Glasses worn by 5 different users. Each user was asked to
rotate his/her head to search for a virtual target. The sequence
duration goes from 23 s to 41 s. We compare our attitude
estimation with ground truth obtained from Vicon and report
the Average Angular Error (AAE) in radians in Table I (left).
From Fig. 4, we can clearly see the yaw estimation with
only ESKF drifts over time, while using our method with
vision, the yaw drift is reduced and head orientation can be
better tracked. Moreover, we would like to study the gaze
accuracy with attitude estimation in Table I (right). In the
static experiment, a quadrotor hovers in front of the user
1, 2, and 3 meters away. The task for a user is to find
and select the hovering agent in the scene using their gaze.
We make the user’s starting direction randomly deviate ±90
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Element Seq.1 Seq.2 Seq.3 Seq.4 Seq.5 Mean

ESKF
yaw 0.0829 0.1475 0.1564 0.2576 0.1358 0.1564
pitch 0.0207 0.0456 0.0240 0.0377 0.0205 0.0297
roll 0.0267 0.0444 0.0203 0.0256 0.0159 0.0266

ESKF+Vision
yaw 0.0187 0.0475 0.0383 0.0825 0.0485 0.0471
pitch 0.0208 0.0508 0.0305 0.0294 0.0194 0.0302
roll 0.0267 0.0382 0.0191 0.0295 0.0159 0.0258

Distance User 1 User 2 User 3 User 4 User 5 Mean

Static
1m 0.1782 0.1735 0.1683 0.1217 0.1604 0.1604
2m 0.1363 0.1586 0.1740 0.1721 0.1506 0.15832
3m 0.1021 0.0904 0.1331 0.1624 0.1340 0.1244

Dynamic
1m 0.1296 0.1701 0.1802 0.1234 0.1021 0.1411
2m 0.1583 0.1757 0.0710 0.1098 0.1211 0.1271
3m 0.0909 0.1376 0.1264 0.1652 0.0906 0.1221

TABLE I: Average Angular Error (AAE) in radian of attitude estimation with all 5 sequences (left) and Relative Pose Error
(RPE) in radian of gaze direction with all 5 users (right).

Fig. 5: Gaze error curve in 3 meters dynamic test of user 5.
degrees from the virtual line connecting user and robot. In
the dynamic experiment, we have a quadrotor flying at 1
m/s, and users were asked to track the aerial robot with their
gaze. Setting the user’s starting pose as a reference frame,
we calculate the Relative Pose Error (RPE) between the gaze
vector ve and the ground truth vector vgt pointing from the
user’s coordinate origin to the agent’s, both in the reference
frame. The gaze transformation from local camera frame to
reference frame is calculated as

λve ∼ RtR
b
cK
−1

ugvg
1

 , (22)

where Rt is the estimated orientation with respect to the
reference frame at time t, Rb

c is the constant rotation matrix
that rotates a vector in camera frame to robot body frame,
K is the intrinsic matrix of camera and [ug vg 1]> is the
homogeneous representation of gaze on image. To get the
ground truth vector vgt, we use the following equation

vgt = tr − tg, (23)

where tg is the glasses position and tr is the robot position,
all in Vicon coordinates. Finally, the RPE is calculated as

RPE = arccos

(
ve · vgt

||ve||2||vgt||2

)
, (24)

Again, in the static test, we decide that the user’s gaze is
“fixed” when the gaze’s standard deviation is less than 10
pixels within 200 ms time window and report error metrics
using gaze data outside this window. In the dynamic test, we
use the overall data sequence to compute the error metrics. In
both static and dynamic experiments, we ask users to conduct
tasks within a period of time and experiments took 10 to 15 s.
From experiment results, we observe that the mean RPE is,
on average, lower for dynamic case comparing to the static
ones. We believe this is due to the fact that it is more natural
for a human to move his or her eyeballs to track a dynamic
object than to fix his/her gaze in space. A 15 s tracking task
seems to be easy for human beings, but fixating gaze at one
point was more challenging. In Fig. 5, we show the error
curve in one of the dynamic sequences. We hypothesize that
the periodic fluctuations coincide with the user blinking or
loosing attention.

B. Drone detection and localization

Our drone detector serves two purposes. First, the detec-
tions are used along with the gaze to enable agent selection.
Second, the detections are used to estimate agent’s depth.
In this section, we report the Root Mean Squared Error
(RMSE) of the depth estimation compared to the ground
truth depth obtained from the Vicon motion capture in each
sequence. The estimated depth was calculated from eq. (21)
and the ground truth depth was obtained by using eq. (23)
and converting the resulting 3D vector into the glasses body
frame. In every sequence, the quadrotor hovers in front of
the user, and we ask the user to try to gaze only at the
robot. Multiple detections are triggered according to our
policy described in Section IV-D. We study the different
distances and report the error metrics in Table II considering
over 90 frames per sequence. The results show competitive
depth estimation from our learning-based method. We can
clearly observe that using gaze to propose a region of interest
(ROI) for the network provides robust detection, especially
for objects that are distant from the user. As a baseline,
we have also evaluated a color-based method to localize
the robot on the same dataset. By applying ellipse fitting
on color segmentation contours and estimating the ellipse
major axis, we can estimate the relative depth, similar to our
previous work [42]. We noticed that the quality of detection
provided by this method depends excessively on the color
segmentation, which is sensitive to light conditions. This
strongly affects the depth estimation, resulting in larger errors
than those induced by our proposed method. We believe that
more advanced learning-based algorithms, such as Faster R-
CNN or Mask R-CNN, would improve localization perfor-
mance. However, better performance would be obtained at
the price of an increased computation time preventing real-
time operation.

C. Gaze-assisted autonomous navigation

We test the overall system, i.e., human-assisted quadrotor
navigation. After the quadrotor is identified, the human can
then fixate on different locations in space to spatially task the
platform. Technically, if communication is available between

distance 1 m 2 m 3 m
# of frames 106 122 91

Ours RMSE 0.109 0.125 0.297
STD 0.054 0.074 0.106

Color-based RMSE 0.524 0.594 0.953
STD 0.447 0.440 0.810

TABLE II: Root Mean Square Error (RMSE) and Standard
Deviation (STD) of depth estimation in meters with the
corresponding number of frames used for evaluation.



Fig. 6: Gaze-based quadrotor spatial tasking (user view). The
user fixates a spatial location (top), denoted with the green
dot, and the drone plans a straight path to reach it (bottom).

the human and the robot, the human can detect the robot just
when performing the first interaction so further realignment
is not strictly necessary. It can be re-detected to compensate
for drifts related to the aerial robot odometry or if the
communication from the robot to the human drops. Once the
relative position is known, the human can send commands
directly in the local frame of the robot. To compute the
3D navigation waypoint, we use the 2D gaze coordinate
provided from the glasses to compute a pointing vector from
the glasses, and select the waypoint depth within a predefined
safety zone. Ideally, the 3D navigation waypoint would come
directly from the eye tracking glasses, but we found in our
experiments that the depth component reported by the glasses
was too noisy to be used. In the future, we plan to further
investigate this issue in order to give the user more depth
control. Nevertheless, in the attached multimedia material,
we show that it is possible for a human-user to move the
quadrotor in space by fixating his/her gaze on a specific
location. This is depicted in Fig. 6, where the robot executes
a maneuver to position itself along the human-gaze direction.
Multiple tests are performed in which the human attempts to
task the robot to go to different areas using combinations of
both head and gaze movement. The robot localization and
tracking performances have been evaluated in our previous
contribution [30] for multiple trajectories and are equivalent
in this case.

D. Limitations and extensions

The proposed approach is a first step toward a new form
of non-invasive and intuitive interaction between humans and
robots. The current sensor-processing solution, despite being
tested on a few users, aims to present the methodology to
enable gaze-based control, though a more extensive user-
study is planned for the future work. Moreover, while the
system should not be considered as a monolithic solution to

the problem of human-robot interaction, it can complement
and augment other interaction modalities to create complex
and more meaningful ways of data interpretation. In fact,
multiple studies [12], [13] suggest that gaze can be used as a
flexible cue for eliminating uncertainty and ambiguity about
referential expressions. The introduction of new modalities
of interaction can, for example, address the limitations of
previous works, which may, for example, require the vehicle
to be in the user’s field of view when moving in space.
The different modalities can be incorporated in the proposed
Kalman filter to predict different objects the human wants
to interact with or to select the vehicle, speeding up the
human-robot collaborative task and refining user’s intention
interpretation.

In addition, the proposed solution can also help the cre-
ation of a drone companion [43], helping people affected
by mobility issues such as those with paraplegia. In these
situations, the person can take advantages of the playful
nature of the system and direct the robot with gaze, and
perhaps a verbal cue, to make an observation of a target or to
obtain advantageous observation points of the environment.
The system will also enable people with very little drone
experience to safely and effectively fly drones in situations
where finding a dedicated pilot is not be possible. Finally,
the navigation strategy can be extended including MAV yaw
control. It is natural to assign a spatial location to the robot’s
position, but it is more complex to command the yaw. A
simple and intuitive way would be to select it to have the
robots heading always pointing according to the trajectory
tangent direction. This can relax the current implicit assump-
tion of navigation in free space facilitating the identification
of obstacles located in front of the robot. In this way, if the
initial straight path is occluded, the vehicle can reach the
final destination by re-planning. Another possibility is to use
the yaw to keep the user in the field of view of the robot
camera if the user focuses his visual attention on a concurrent
task, or to map other forms of interactions to yaw motions.

VI. CONCLUSION

In this work, we presented a first step toward enabling
human-MAV teams for spatial tasking by utilizing human
eye gaze. The proposed approach is able to decouple head
orientation from eye gaze, while concurrently identifying the
aerial vehicle. Our solution is portable and allows spatial
control of the aerial platform by gazing at specific locations
without requiring the user to be in the robot’s field of view.

We discussed the advantages, limitations, and extensions
of the approach, which involve increased control and fusion
with multi-modal interaction types. We would also like to
explore the ability to consider multiple agents to obtain
a complete multi-human/multi-robot collaborative system.
Finally, we would like to investigate the need of providing
users with a feedback about detected waypoints despite the
current solution directly allows to verify if the robot has
reached the goal. We believe our solution opens up new
ways to interpret human attention and create new anticipative
human-robot interfaces.
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