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Abstract— This work focuses on the critical problem of
treating humans and autonomous robots as peer teammates
for tasks performed in unstructured, uninstrumented environ-
ments. To accomplish this peer relationship, we propose to
use the communication of information to the human and the
autonomous robot teammate as a method of influencing their
behavior. We use augmented reality technology to achieve a bi-
directional communication of information between teammates.
We outline multiple strategies for information communication
from the autonomous robot to the human teammate. We exam-
ine these alternatives in the context of human-robot cooperative
exploration of an unknown and uninstrumented environment.
We present results from three experiments which show po-
tential influence on human task performance in cooperative
exploration.

I. INTRODUCTION

Enabling human-robot cooperation in unstructured and
uninstrumented environments, specifically where humans
and robots perform a task as equal teammates, is an important
and challenging class of problems. Solutions to this class of
problems could have significant impact on many application
domains, such as search and rescue, environmental monitor-
ing, disaster response, and military operations.

Humans in such cooperative human-robot interaction tasks
are most often in a supervisory role [1]. Even teamwork-
centered approaches to adjustable autonomy give control
for some specific activities to autonomous agents and other
specific activities to humans teammates to enable cooper-
ation [2]. In many human-robot teaming scenarios where
the teammates are performing the same task, the robot is
often expected to adapt or defer to the human teammate
at points of uncertainty or cognitive load [3]. The ability
for human and robot teammates to work cooperatively as
equal teammates has received some attention [4], but we
are interested in extending into situations where autonomous
robots and humans are performing the same task, in a
similar or overlapping role, in unstructured and unknown
environments.

The communication of information fundamentally influ-
ences the decisions and behavior of intelligent agents. By
varying the quantity and quality of the information communi-
cated, the behavior of teammates consuming that information
can be affected. The issue of what information to communi-
cate between teammates and when is particularly important

1Army Research Laboratory, Adelphi, MD 20783, USA
{christopher.m.reardon3, john.g.rogers59,
jonathan.r.fink3}.civ@mail.mil

2Army Research Laboratory Research Associateship Program adminis-
tered by Oak Ridge Associated Universities. klee23456@gmail.com

Fig. 1: Teammate information communication overview. The
x-axis represents information about the human teammate
communicated to the robot, which allows the robot to
better model the human teammate. The y-axis represents
information about the robot perception and intent that is
communicated to the human teammate. At baseline i∅ is no
communication. This paper implements i0 and focuses on
three points on this spectrum, denoted by i1, i2, and i3.

in multi-agent collaborative tasks in uninstrumented, un-
known environments. For example, research has shown how
using local, implicit information to reduce interference [5],
how good performance can be achieved without communi-
cation if the number of teammates is known [6], and how in
a competitive team search setting larger teams are hindered
more than smaller teams in a situation where neither can
communicate [7].

We believe that information communicated via augmented
reality (AR) presents an opportunity to influence the behavior
of human teammates in human-robot cooperative tasks with
the potential to improve task performance. In this work,
we leverage the recent emergence of AR devices to both
collect information from the human teammate and present
information via augmented reality. Information from the
human can enable improved decision making by the robot
teammate. At the same time, this system will allow us to
control the information presented to a human, influence the
human’s model of the robot’s knowledge and behavior, and
shape the human’s performance. In this way, we treat the
human and robot teammates as peer members of the cooper-
ative team, and seek to influence each through information
communication.



There are several technical challenges to communicating
and visualizing information between a robot and a human
teammate. These challenges include establishing an accurate
alignment (e.g., rigid body transform) between robot and hu-
man frames without external instrumentation, communicat-
ing shared information between the teammates in the context
of that transform, and enabling the visualization capabilities
subject to constraints on the AR device. We present a set
of enabling technologies to overcome these challenges and
accomplish the communication of information via AR. We
leverage those enabling technologies to demonstrate that by
manipulating the information communicated to the human
in this manner, we can influence behavior. We specifically
examine this influence in a cooperative exploration task in
unknown, uninstrumented environments.

Given these challenges, we believe information commu-
nication in human-robot team collaborative tasks can be
broken down is into two primary axes along the lines of
communication (Fig. 1):

1) Communication of information to the robot that allows
the robot to build a better model of the human to shape
robot decision making, and

2) Communication of information to the human that al-
lows the human to understand the the robot, such as
the robot’s current plan, state of the exploration task,
and how the robot is evaluating future actions.

In the context of cooperative exploration, we note that for
1) communication and its impact on the robot’s model and
decision making can be engineered to enhance predictability,
while for 2) because the human teammate is consuming
the information, the information presented to the human
can be used to shape the human’s mental model and future
actions with less transparency. For defining the communi-
cated information strategies of 2), we draw inspiration from
previous work on situational awareness [8], particularly in
the context of human-robot teaming [9], whose model defines
three levels of situational awareness: purpose and perception,
reasoning and belief, and projection to future state.

To examine the impact of these dimensions on team
performance, in this work we present the design of a system
and technology to explore communication for the human-
robot cooperative exploration scenario. We demonstrate this
system in three real-world experiments, where the human and
robot cooperatively explore an uninstrumented environment.
Our results show that communicating information about plan,
task, and future action evaluation allows us to influence
human performance and enables human-robot cooperative
exploration in uninstrumented environments. We present
results from different communication strategies and analyze
their strengths and potential weaknesses.

II. OVERVIEW

Here, we present an overview of the concepts and main
components necessary to enable bi-directional information
communication via AR for collaboration in unstructured,
uninstrumented environments.

A. Cooperative Exploration

Human-robot cooperative exploration is an important ap-
plication for domains such as search and rescue, environ-
mental monitoring, and military operations. The need for
autonomous robots to perform better alongside humans in
disaster and search and rescue scenarios in particular is
essential [10], [11]. In these potentially time-critical applica-
tions, humans and robots will be expected to work together
to coordinate their search patterns to find their targets more
quickly than each teammate acting alone. While information-
theoretic exploration [12], [13], [14] and cooperative multi-
robot search and exploration [15], [16], [17] are areas of
ongoing research, technologies that enable human-robot co-
operative exploration are not well-studied.

Challenges for cooperative exploration include balancing
implicit vs explicit communication of local and global in-
formation, bandwidth, and scaling to larger teams. A human
teammate introduces additional challenges, such as issues
of understanding the human’s model of the task, providing
contextually-relevant information to shape that model, and
predicting the human’s actions in order to adapt the robot
teammate’s strategy accordingly.

We propose a cooperative human-robot team where the
human is equipped with an augmented-reality head-mounted
device (AR-HMD), and must explore an unknown envi-
ronment with a robot teammate. The AR-HMD and robot
both have on-board simultaneous localization and mapping
(SLAM) capabilities. The robot searches autonomously, us-
ing a frontier- and information theoretic-based search strat-
egy, such as in [18].

B. Frame Alignment in Uninstrumented Environments

To examine the impact of communication, the human
and robot must share information about their proprioceptive
states. Because each are performing SLAM independently, a
critical initial step is to compute the rigid body transform that
allows us to represent information in each other’s respective
frames. A simple solution to this problem is to instrument
the environment, e.g., with vision-based markers or motion
capture systems, and directly compute the transforms be-
tween the human and robot’s frames. However, we envision
this technology being particularly impactful in applications
beyond laboratory and factory settings e.g., in cooperative
search and exploration applications in disaster sites where
such instrumentation would be impossible.

Therefore, we leverage the approach presented in [19] to
align the coordinate frames of the robot and human. We
assume that both the robot and the AR-HMD generate a
geometric representation of the environment in point cloud
format. We compute the homogeneous transformation matrix
between the robot and human point clouds T a

r ∈ SE(3),
where the subscripts r and a represent the robot and AR-
HMD (human) frames, respectively. We likewise define xr

and xa ∈ SE(3) as the starting poses of the robot and
human, respectively. Solving for T a

r is a multi-step process:
1) An initial estimate of T a

r is generated by the human,
who uses the AR-HMD interface’s pointing and ges-



ture recognition to place an AR marker indicating the
robot’s initial pose xa in the AR-HMD frame.

2) The reference-frame transformation is initialized as
T a
r = xa · x−1r .

3) The Iterative Closest Point (ICP) algorithm [20] is
applied to this initial coarse estimate to refine the frame
alignment.

4) The transformation is recomputed online as the robot
and the human-worn AR-HMD move throughout the
environment.

C. Compositing Heterogeneous Maps

Central to the communication of information for coop-
erative exploration (or many tasks where teammates are
maneuvering in the same environment) is the fusing of map
information.

In our application, we fuse map information generated by
a mobile ground robot equipped with a LiDAR sensor and
an AR-HMD performing vision-based SLAM to generate a
composite map.

The mapping system used on board the mobile robot is
based upon OmniMapper [21]. This system is composed of a
back-end pose graph smoothing engine and a front end mod-
ule which inserts vertices and edges in the graph. Pose graph
vertices represent the robot’s location and the associated
sensor measurements, such as a 3D point cloud, observed
at that time. Pose graph edges consist of ICP corrected
relative pose measurements for subsequent adjacent vertices.
Additionally, loop closure measurements are inserted when
ICP matches are made for point clouds associated with
vertices from much earlier in the robot’s trajectory which
appear to be overlapping with the current observations. These
types of measurements enable the mapping system to correct
accumulated error from incremental adjacent measurements.

Sensor measurements associated with pose graph vertices
are used to generate local occupancy grid maps by iterating
through the point cloud and setting an obstacle for points
which fall within a height filter. For each of these points, an
line of grid cells to the sensor’s origin is cleared. Each of
these local occupancy grid maps is then combined using the
optimized robot trajectory using negative log-odds, which
counts obstacle observations minus clear observations and
generates an occupancy probability map.

The HMD utilizes a proprietary SLAM system to track the
device’s motion and generate a model of the environment.
This procedure provides a sparse point cloud representation
of the modeled area. As we do not have access to the inter-
nals of the SLAM implementation used on-board the HMD,
we must first convert the point cloud into an occupancy grid
so it can be composited with the robot’s map to generate
a unified global view. The point cloud from the HMD is
converted to an occupancy grid by setting cells to be obstacle
when the maximum height of all points from the cloud which
fall within a vertical column over the cell exceeds a threshold
of 7cm. Conversely, when the maximum height falls below
this threshold, the associated grid cell is cleared to free space.

The occupancy grid converted from the HMD’s point
cloud is composited onto the robot’s occupancy grid using
the relative transform found in Section II-B. The HMD
occupancy grid information is only composited into the
unknown area of the robot’s occupancy grid where the robot
has not mapped.

This fused composite map ultimately allows the each
teammate to leverage the exploration efforts of the other in
its own decision making.

D. Visualization of Robot Teammate’s Information

In order to explore communication of robot information
to the human, capabilities were constructed to translate that
information into a format for visualization via AR.

In general, information is presented as semi-transparent
geometric objects and text to the human wearing the AR-
HMD. Based upon our use of the ROS framework (see
Sec. IV-A), we implemented visualization capabilities for
all RViz1 visualization objects. In this process, we made
modifications to enhance usability and to address technical
challenges.

Due to the size of the occupancy grids, several actions
were taken to reduce their impact on render time and
bandwidth. The occupancy grid was naively downsampled
before being broadcasted. In addition to lowering the still
significant bandwidth cost, reducing the number of objects
to represent the costmap helped with information overload.

Signal strength and bandwidth are rarely optimal in field
environments, and this made receiving the costmaps at a high
frequency challenging for the AR-HMD. To address this,
along with the downsampling, only select portions of the
occupancy grids were transmitted. Three areas were selected
due to their importance: the area around the user, around the
robot, and around the gaze location. Using only these loca-
tions as opposed to the entire grid created a healthy balance
between bandwidth usage and showing useful information
to the user. Using instanced draw calls would be a future
improvement that could increase the number of rendered
cells significantly, perhaps even removing the need to split
the costmap.

III. APPROACH

In the context of cooperative exploration (Sec. II-A),
we begin to address 1) from Sec. I - communication of
information to the robot that allows the robot to build a
better model of the human to shape robot decision making.
We perform a first step in this direction by integrating the
human’s map (generated by the AR-HMD) with the robot’s
map for robot planning.

We show how our system is able to more deeply explore
2) from Sec. I - communication of information to the human
that allows the human to understand the robot’s plan, the state
of the task, and the robot’s information-theoretic decision
making. To accomplish this, we use an AR-HMD to: A)
Visualize the robot’s current plan in the AR display, B)

1wiki.ros.org/rviz



(a)

(b)

(c)

Fig. 2: (a) Communicating the robot’s current plan. The
robot’s planned path (green line) and computed kinemat-
ically feasible movement trajectory (purple line), as seen
by the human through the AR-HMD. (b) Communicating
the current task state. Explored unoccupied regions are
faint green spheres. In addition to what is visualized in
(a), explored occupied regions are faint red spheres, and
unexplored regions are larger, yellow spheres seen behind the
walls to the left and right of the robot. (c) Communicating the
robot’s evaluation of future actions. In addition to (b), the
robot communicates unexplored frontiers (orange outlines)
and goal points (purple circles).

Display the integrated human-robot map to the human via
AR to help the human understand the current state of the ex-
ploration task, C) Further add information gain information
and frontier selection decisions to the environment to convey
how the robot is evaluating future actions.

A. Communicating the Robot’s Current Plan

The robot’s current plan is a trajectory from the robot’s
current position to its selected destination in SE(3). The
kinematically-feasible plan for the robot is generated using
the Search-Based Planning Library [22].

An example of the visualization of this plan, as seen from
the perspective of the human teammate wearing the AR-
HMD, is shown in Fig. 2a. We represent the path to the
human as a continuous sequence of line segments from the
robot’s current position to its goal. This sequence is updated
live as the robot traverses the path, and the path is subject
to replanning due to obstacles, slippage, etc. Both the global
and local path are displayed to give a full representation of
the robot’s intent and planning.

B. Communicating the State of the Exploration Task

We communicate the state of the exploration task to the
human using the AR-HMD. Fundamentally, the state of the
exploration task is the amount of information that has been
recovered by the team, i.e., the area that has been explored.
We therefore represent this state as the area that has been
mapped by the human-robot team.

The data structure that underlies this state is a 2D oc-
cupancy grid of resolution 0.1m/pixel with values from
0 (unoccupied) to 100 (fully occupied). The method for
generating this grid is described in II-C.

We present the occupancy grid to the human via AR as a
collection of colored spheres at floor level. The spheres are
colored by their occupancy grid value, with unoccupied tiles
as green and occupied as red. Tiles with a value around 50
are viewed as unknown, and are yellow, more opaque, and
significantly larger to draw attention to them. An example
image from the AR-HMD perspective is shown in Fig. 2b.
In order to limit the number of objects rendered on the AR-
HMD, the grid is decimated before three sections are isolated
for visualization: the area around the user, around the gaze
location, and around the robot itself.

C. Communicating Robot Evaluation of Future Actions

As described in Sec. II, the robot’s exploration strategy
is frontier- and information-theoretic-based. Frontiers are
defined as regions on the boundary between the explored
map and unexplored space [23]. The selection of which
frontier to explore next is based on an information gain
metric that increases efficiency and accuracy [18]. In our
communication strategy, frontiers are represented as orange
outlines around small zones labeled with a utility value. The
utility is a measure of information gain weighted against the
robot’s distance to the frontier. After identifying frontiers and
potential information gains, the robot identifies a set of goal
positions from which to observe those frontiers, visualized to



the human via AR as purple circles. Example visualizations
of the frontiers and goal positions are shown in Fig. 2c.

IV. EXPERIMENTS

To demonstrate the impact of information communication
between teammates, we conduct experiments using each
of the communication strategies described in Sec. III. In
these experiments, a researcher performs the role of human
teammate, and the robot, human, and combined contribution
to information gain is measured. A full-scale human study
is a subject for future work.

For all experiments, the human and the robot perform
cooperative exploration of the environment, the human team-
mate’s AR-HMD information-based mapping information is
communicated to the robot, and that information is compos-
ited into a unified map as described in Sec. II-C. The robot
teammate is then able to identify and explore areas that still
contain unknown information, i.e. areas that the team has not
explored and mapped.

The communication strategies and corresponding exper-
iments are organized such that increasing levels of infor-
mation from the robot are added to the total information
communicated to the human in each successive experiment.
In the first experiment, the robot’s current plan is commu-
nicated via AR to enable human understanding of robot
intent (Sec. IV-B). For the second experiment, the current
state of the exploration task, i.e. which areas are explored
and which are unexplored, is also communicated via AR
(Sec. IV-C). For the third experiment, the information about
the robot’s future plans, i.e. exploration frontiers and goal
points to explore those frontiers, is communicated as well
(Sec. IV-D). For each communication strategy, we measure
the information gain by the human-robot team and present
representative outcomes.

A. Hardware and Software

A Clearpath Robotics Jackal robot (Fig. 2a) performs
cooperative exploration alongside a human experimenter in
these experiments. The robot is equipped with a Velodyne
VLP-16 LiDAR, Microstrain 3DM-GX4 inertial measure-
ment unit (IMU) and an Orbbec Astra Pro camera. Custom
software enables the robot to perform simultaneous local-
ization and mapping (SLAM) and autonomous navigation
as described in [24]. The AR-HMD worn by the human in
these experiments is the Microsoft Hololens2. The Hololens
performs vision-based mapping onboard using a sensor array
of forward-facing cameras, whereas the robot uses the 360◦

LiDAR sensor.
The software used is implemented as a suite of C++,

Python, and C# software modules. We leverage ROS3

for messaging, interprocess communication, and common
robotics libraries. We use ROS#4 for Hololens-ROS commu-
nication with custom Unity extensions for visualization and
mapping information. The Hololens has an onboard visual

2microsoft.com/hololens
3ros.org
4github.com/siemens/ros-sharp

(a)
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Fig. 3: Time-series results from communicating the robot’s
current plan as visualized in Rviz. (a) shows the human
teammate (red arrow) following the robot (green rectangle)
down a hallway similar to Fig. 2a. Shortly later (b), seeing
through AR visualization of the robot’s plan that the robot’s
intent is to proceed down the hallway, the human uses this
information to decide to explore a nearby room that the robot
did not enter.

SLAM solution that outputs a 3D mesh-based map of the
environment, which we translate into a point cloud and use
for frame alignment and map compositing as described in
Sec. II.

B. Communicating Robot’s Current Plan Enables Intent
Understanding

In this first experiment, the most basic level of information
is shared to the human. The robot’s current motion plan is
visualized to the human as described in Sec. III-A. At any
moment, the human teammate is able to explore areas that the
robot is not currently planning to visit. Other than this current
motion plan, it is up to the human teammate to maintain a
mental model of the places the team has visited.

Using this information visualized via AR, the human
teammate is able to infer the robot’s intent in perform-
ing the exploration task. Figure 3 depicts representative
results from this experiment. After entering the building, the
robot teammate’s information-theoretic-based planner selects
a path down the center of the hallway (Fig. 3a). The human
teammate is able to see that path (appearing very similar to
Fig. 2a) and selects a room that the human did not see the
robot enter (Fig. 3b).
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Fig. 4: Time-series results from communicating the explo-
ration task state as visualized in Rviz. In (a), the human (red
arrow) and robot (green rectangle) have entered the building.
In addition to the information displayed in Fig. 3, explored
unoccupied areas are shown as green spheres, and explored
occupied areas are red spheres. Unexplored areas are shown
as yellow spheres. This is analogous to the AR depiction
shown in Fig. 2b. Shortly later (b), the robot proceeds straight
ahead, and the human moves to an unexplored area.

This experiment was performed in three buildings of
similar size but different configuration. Information gains
across all three environments are shown in Figs. 6a-c. We
can observe that using this small amount of information,
the human teammate is able to contribute moderately to the
cooperative exploration task.

C. Communicating Exploration Task State Enables Cooper-
ative Mapping

For the second experiment, we communicate information
regarding the state of the exploration task to the human
teammate as described in Sec. III-B. This is in addition to the
robot plan information communicated in the first experiment.
A depiction of this information is seen in Fig. 2b.

Using the information about the exploration task state, the
human and robot are able to more cooperatively map the
environment. Even in situations where the robot and human
are performing separately (not within sight), the human is
able to see through AR the areas that are unexplored and
choose to explore them. Figure 4 shows exemplar results
from adding communication of the exploration task state. In
Fig. 4a, the robot and teammate enter the building together.
We can see that in Fig. 4b, the human chooses to explore a
large, unknown region of the environment.

Information gain measurements using this communication
strategy are presented in Figs. 6d-f across the same three
building environments used in the first experiment. We ob-
serve that the human’s contribution to the overall information
gain appears similar, but lesser, than the other communication
strategies. We believe this is due to the human teammate
making use of the knowledge of exact location of unexplored
regions to “fill in the gaps” in the robot’s exploration.
For example, by carefully mapping small, LIDAR-shadowed
areas that the robot might have missed.

D. Communicating Future Actions Enables Multi-Agent Co-
operative Performance

For the third experiment, the strategy is to communicate
the robot’s evaluation of future plans, in terms of exploration
frontiers and possible goal locations, as described in Sec. III-
C. This information is presented to the human in addition to
the information from the previous two experiments.

The human teammate is able to exploit this information
for enhanced cooperative performance, as depicted in Fig. 5.
The human and robot after entering a building (Fig. 5a). The
human is sees the robot’s plan to visit the upper goal position
to explore the two large frontiers there. The human teammate
chooses to explore the lower direction, even through the
frontier is smaller (Fig.5b).

Figures 6g-i show the information gain for this strategy.
Even though this is a significant amount of information
presented to the human via AR, the benefits outweigh the
potential costs of cognitive load. The human teammate is
able to contribute much more to the overall exploration task
than in the previous two experiments. Indeed, in the second
and third environments (Fig. 6i) the human teammate is able
to map more than the robot.

V. DISCUSSION, LIMITATIONS, AND FUTURE WORK

For the task of cooperative mapping, ideally the robot-
human team maps completely separate areas. Although this
is not feasible in all situations, for example due to envi-
ronmental topology, minimizing overlap of mapped areas is
essential for better team performance.

We observe that the amount of overlap in explored areas
by the AR-HMD user and the robot either stays consistent
or decreases when the user is given additional information
about the robot’s understanding of the world (Table I). While
this evidence is preliminary, as noted in Sec. IV-D, we
believe that this represents the human teammate establishing
a mental model of the robot. We believe that the use of
augmented reality in these situations helps the user avoid
repeating work.

Strategy Env 1 Env 2 Env 3
Robot Intent 0.51 0.75 0.44
Task State 0.47 0.48 0.40
Future Plans 0.47 0.42 0.44

TABLE I: Exploration overlap - portion of total area that
was explored by both teammates.

As noted in Sec. IV-C, the addition of state information
may introduce an unintended effect of diminishing the quan-
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Fig. 5: Time-series results from communicating the robot’s
future plans as visualized in Rviz. In (a), the human (red
arrow) and robot (green rectangle) begin exploring the envi-
ronment. In addition to the information displayed in Fig. 4,
the robot identifies exploration frontiers (orange polygons)
and possible goal positions (large purple circles) and selects
a goal position (large green circle). In (b), the human has
moved to the lower frontier, while the robot has begun
exploring the upper frontiers.

tity of information collected by the human teammate. We
believe this is due to the human using the state information
to more thoroughly uncover even small unexplored regions,
leaving the robot to map larger areas.

The main limitation of this work is that the results pre-
sented here seek to demonstrate a technological approach
and are clearly limited in sample size. They are intended
to present the communication strategies from Sec. III, im-
plemented in a system using the enabling technologies from
Sec. II, and to encourage discussion and future work. We
believe full human studies are warranted for future work.

Additional future work includes examination of other
communication configurations, e.g., along both axis of Fig. 1
including deeply exploring methods of communicating more
information from the human to the robot to allow the robot
to better predict the human and improve robot decision
making, experimentation in more challenging and complex
field environments, and examination of factors such as dimin-
ishing returns for information communication via AR such
as cognitive load.

VI. CONCLUSION

To enable the treatment of humans and robots as peer
teammates in real-world field environments, we have exam-
ined the use of communication via augmented reality to in-
fluence the behavior of a human teammate in a human-robot
team task: cooperative exploration of an unstructured and
uninstrumented environment. We have presented an approach
that communicates human exploration information from the
AR-HMD to the robot teammate, and explored the effects of
three levels of information communication from the robot to
the human on the team’s information gain performance: 1)
communicating the robot’s current plan, 2) communicating
the task state, and 3) communicating future actions. Our
preliminary results show that it is indeed possible to shape
human-robot team performance through communication via
AR in this manner. We believe that this is an important step
towards determining how AR can be used to shape human
behavior in cooperative teams in field environments, which
demonstrates that there are many opportunities for future
work (Sec. V) to explore directions of great potential.
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