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Abstract— Robots operating alongside humans in field en-
vironments have the potential to greatly increase the situ-
ational awareness of their human teammates. A significant
challenge, however, is the efficient conveyance of what the
robot perceives to the human in order to achieve improved
situational awareness. We believe augmented reality (AR),
which allows a human to simultaneously perceive the real world
and digital information situated virtually in the real world, has
the potential to address this issue. Motivated by the emerging
prevalence of practical human-wearable AR devices, we present
a system that enables a robot to perform cooperative search
with a human teammate, where the robot can both share search
results and assist the human teammate in navigation to the
search target. We demonstrate this ability in a search task in
an uninstrumented environment where the robot identifies and
localizes targets and provides navigation direction via AR to
bring the human to the correct target.

I. INTRODUCTION

One of the primary purposes envisioned for robots ope-
rating in field environments is to provide their human
teammates increased situational awareness. The benefit of
this increased information exchange can be seen in many
potential applications. In search and rescue operations, the
ability to quickly locate and navigate to victims while simul-
taneously avoiding dangerous areas would be a potentially
life-saving advancement, and is indeed already being realized
in teleoperation and limited autonomy scenarios.

A significant challenge that limits this application is the
communication of the perception information from robots
to human teammates. For example, teleoperation generally
allows one human to access and control the information from
one robot, at the expense of that person’s time and focus. In
this work, we wish to improve the efficiency of information
exchange for situational awareness in field robotics scenarios.
We accomplish this through the use of augmented reality
(AR), in which a human’s perceived reality is augmented
by virtual information that is situated in the real world.
We use an AR interface to visualize for the human only
information perceived by the robot that is relevant for the
task. By visualizing through AR information that is most
useful for the human to perform his or her portion of the
task, we can increase the human’s situational awareness in
such a way that the team’s performance improves.
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Recently, there is a growing interest in using AR and
mixed-reality to convey robot perception and intent to hu-
mans in various human-robot interaction scenarios [1]. Much
of the current work, however, is focused on cooperative
manipulation of objects by stationary robots with manipu-
lators, e.g., [2] and assembly line-type tasks [3]. Work that
has addressed mobile robots, such as [4], has thus far been
limited to constrained, instrumented environments.

The novelty of our work is in the application of AR
for human-robot team performance in unconstrained field
environments. Specifically we examine a human equipped
with a wearable, AR head-mounted device (AR-HMD) that
is able to convey information about the robot’s perception of
identified targets in a cooperative search task, and provide
navigation planning to assist the human in efficient naviga-
tion to the correct search targets.

Fundamental to achieving this capability is the assump-
tion that the robot and human teammates have autonomous
localization capabilities, and that the robotic system is able
to plan a global navigation path for the human from the
current position to the target. In order to achieve this, a
mutual alignment of coordinate frames between human and
robot teammates must occur. We believe that the ability for
robots and AR-wearing human teammates to dynamically
achieve mutual alignment of coordinate frames online, wit-
hout external input and maintain this alignment throughout
the mission is a challenging requirement for real-world field
robotics applications, which require decentralized position-
based reasoning between multiple agents in non-engineered,
uninstrumented environments.

Therefore, to generalize our approach to real field en-
vironments, we eschew engineering the environment with
an external ground-truth calculation device such as motion
capture, which has been used in previous works focused on
indoor and manufacturing-type environment applications, or
mutual observation, e.g., to localize the robot when seen in
the AR device’s FOV. We instead align our human and robot
coordinate frames using the sensory information available
from the robot and human-worn AR device.

The AR-HMD and the robot perform online mutual frame
alignment of 3D point cloud data from the camera-based
visual mapping of the AR-HMD and the robot’s LiDAR
scans of the environment. We show that by increasing the
situational awareness of a human teammate with a robot’s
perception abilities in this manner, we can improve the
human’s ability to find and navigate to correct targets. We
believe that this is the first application of AR to unconstrai-
ned field environments to enable cooperative search.



The remainder of this paper is organized as follows.
Section II provides a review of the related research. Our
problem is formally defined in Section III. We detail our
approach in Section IV. Experimental results are presented
in Section V, before finally concluding with Section VI.

II. RELATED WORK

In this section, we provide a review of recent work on the
intersection of augmented reality and human interaction with
autonomous robots.

Spurred by the recent availability of commercial off-the-
shelf human-wearable AR devices, there is a growing body of
recent research using AR to provide insight and introspection
into the decision space and intents of robotic systems. For
example, recent work providing situational awareness to
human teammates by visualizing robot video data in AR
to see through walls in instrumented environments received
attention [5]. The general use of virtual gestures from armless
robots for interaction and an analysis of multiple dimensions
and features for their application was proposed in [1].

Several recent works focus on human-robot cooperation
in object manipulation and assembly scenarios. AR used to
visualize Baxter robot motion to enable human perception
of planned motion has been shown to enable faster and
more accurate task performance in such a scenario [2]. A
similar task was performed in [6] using mixed reality for
object interaction with armed robot in shared workspace
with the addition of analysis of different video perspectives.
Robot intent was projected onto objects to visualize task and
intention information for assembly line tasks in [3]. How a
robot’s ability to reveal intentions via AR affects plan cost,
termed projection-aware planning, was explored in [7], and
illustrated through object manipulation tasks.

Demonstration of visualizing movement and navigation
intent in controlled environments has also been examined.
Recently, [4] showed that visually signaled robot motion
intent using AR improves task efficiency and human under-
standing of intent for UAVs performing assembly in indoor
instrumented environments. On-board intention projection
via an LED projector on robotic forklift on the shared
floor space was shown to improve human response to the
robot [8]. The Kilobot AR project [9], [10] utilizes both
a virtualized environment and virtualized sensors for rapid
prototyping and scaling to hundreds of Kilobots. For humans
to understand robot soccer players’ behavior, multiple robot
behaviors were visualized on a screen in [11].

In terms of AR interface, light projected onto the environ-
ment offers one visualization modality that is particularly
suited to well-structured environments, such as assembly
lines [3] and factory floors [8]. Fixed [11] and portable [6]
screens are another option for AR interface. For field robotics
applications in unconstrained environments that are most
relevant to safety, security, and rescue scenarios, the human-
wearable head mounted display offers promise.

Our work examines the use of an AR-HMD for improving
human-robot teaming in these types of scenarios. We believe

we are the first to consider AR for human-robot teaming for
search in an unconstrained, uninstrumented environment.

III. PROBLEM STATEMENT

We assume a single a ground robot that is able to au-
tonomously perform simultaneous localization and mapping
(SLAM) in an unstructured environment to produce consis-
tent localization information for the robot and its sensor
measurements that can be used to generate maps of the
environment that include both point cloud and occupancy
grid representations. These maps of the environment are used
to autonomously navigate the environment where perception
capabilities can be employed to detect and localize targets
of interest, e.g., victims in a disaster scenario. We assume as
human teammate equipped with AR-HMD that is capable
of reliably tracking its own pose based on local sensor
measurements and displaying augmented reality visualization
information to the wearer. Furthermore, we assume the AR-
HMD system makes its geometric representation of the
environment available as a point cloud or triangle mesh. The
fundamental problem we are addressing is to use the ground
robot to explore an environment, detect targets, and guide
the human to each target in turn.

The robot’s SLAM system will define a map reference
frame, typically with the origin at the starting location for
the robot, such that we define its six degree-of-freedom pose
as xr ∈ SE(3). Sensor-based observations of targets are
represented as zr ∈ <3. Note that the subscript r denoting
this measurement is represented in the map reference frame
of the robot. At the same time, the AR-HMD system will
separately define it’s own reference frame in which the pose
of the human can be represented ha ∈ SE(3) where the a
subscript denotes the AR-HMD system reference frame.

In this context, we define two concrete sub-problems that
must be solved to address our search task. First, since the
robot and AR-HMD system operate independently, we must
solve for the rigid-body transformation that allows us to
visualize robot-based observations with the AR-HMD. That
is, we must compute the homogeneous transformation matrix
T a
r ∈ SE(3) such that, e.g., we can represent an observation

za = T a
r zr. Given proper frame alignment, the second sub-

problem is to provide visualization through the AR-HMD
device that helps direct the human teammate to the next
target.

IV. APPROACH

Our approach to the problem leverages augmented reality
to communicate though AR visualization both the position
of each target and the path from the human teammate to
the target, which is calculated by the robot teammate. By
communicating both the relevant target as well as the path
to the target, we are able to maximize the efficiency of the
human teammate.

However, as noted above, this functionality requires a
solution to the transformation T a

r between the robot’s AR-
HMD and the system’s map frames. We solve for this
transformation in two steps. First, the human teammate



Fig. 1: Illustration of the initial pose estimate (white sphere
for location and arrow for orientation) of the robot provided
through the AR interface.

uses the AR-HMD system to interactively provide an initial
estimate of T a

r by “placing” an AR marker on the robot and
indicating the direction the robot is facing as depicted in
Fig. 1. We can use this placement as a “measurement” of
the robot xa in the AR-HMD frame. Then, we can initialize
the reference-frame transformation as T a

r = xa · x−1
r . This

provides a coarse estimate that can be further refined by
performing the iterative closest point (ICP) algorithm [12]
on point clouds produced by the robot and AR-HMD system
in their respective reference frames. ICP has been shown to
be a robust way to align point clouds even in the presence
of noise and, indeed, is the basis for many LiDAR-based
SLAM systems. This procedure can be recomputed as new
information is observed by both the robot and the AR-
HMD in order to improve the alignment as new parts of
the environment are explored.

Given an accurate alignment of the robot’s reference
frame with the AR-HMD system, robot-based observations
of targets in the environment can immediately be presented
to the human teammate as AR visualizations. However, we
hypothesize that in a sufficiently complex environment, e.g.,
a post-disaster scenario, additional guidance for how the
human teammate can navigate to the target will be beneficial.
To this end, we leverage the autonomous navigation capabi-
lities that are already present on the robot in order to perform
a motion plan that goes from the current human teammate’s
pose to the next target observed by the robot based on the
robot’s occupancy-grid representation of the environment. By
displaying this path to the human in augmented reality, we
can affect a “wayfaring” capability that steers the human
along the shortest path to the target of interest.

V. EXPERIMENTAL RESULTS

A. Implementation

The robotic teammate for this experiment is a Clearpath
Robotics Jackal as depicted in Fig. 2a. It is equipped with
a Velodyne VLP-16 LiDAR, Microstrain 3DM-GX4 inertial
measurement unit (IMU) and an Orbbec Astra Pro camera.
The robot operates with onboard algorithms to perform si-
multaneous localization and mapping as well as autonomous
navigation as described in [13].

(a) (b)

Fig. 2: Mobile robot (a) AR head-mounted device (b) used
in experiments.

Our human teammate was equipped with a Microsoft
Hololens head-mounted AR device as depicted in Fig. 2b.
Our system is implemented as a suite of C++, Python,
and C# software modules. We leverage ROS [14] for mes-
saging, interprocess communication, and common robotics
libraries. We use the SIGverse [15] system for Hololens-
ROS communication with custom extensions that allow for
communication of the Hololens mapping information. The
Hololens employs high-quality solutions to the visual SLAM
problem, integrating images from five cameras and onboard
inertial measurements to rapidly update it’s 3D mesh-based
map of the environment. This includes place-recognition
technology to remember maps of previously visited locations.
We found the Hololens to do a good job of accurately map-
ping complicated environments in bright sunlight, though we
did apply a 95% tint to the device to enhance the visibility
of the AR visualizations.

At the start of each experiment, the human teammate is
asked to use the Hololens interface to “place” a spherical
marker on the location of the robot as depicted in Fig. 1.
After placing the sphere, the next interaction sets the current
heading of the robot. Using this initial alignment, the system
performs the ICP algorithm between the vertices of the
Hololens mesh with a point cloud rendered by combining all
of the point clouds observed by the robot with its Velodyne
VLP-16 sensor. We found the ICP algorithm to be stable
under a variety of conditions, likely due to the good initial
guess provided by the user. This alignment procedure is
recomputed as updated point clouds are generated by both
the Hololens and the SLAM system on the robot so that
the alignment actually improves as more structure of the
environment is uncovered.

Aligning the Hololens frame with the robot’s map not only
allows us to accurately visualize augmented reality markers
for the human teammate, but has the additional benefit that
the robot knows the current pose of the human teammate.
Using this information, when a target is detected, the robot
is able to use its occupancy grid to plan a feasible path
from the human teammate location to the target using the
Search-Based Planning Library [16]. While we constrain the
motion-planning search for our robot to account for it’s non-
holonomic constraints, we plan for the human using a simple
grid connected lattice.



This implementation allows the autonomous robot to
reason about the human and target location in the same
coordinate system, thus enabling the robot to plan feasible
paths for the human to localized targets and the visualization
of paths and correct targets to the human via the Hololens.

B. Target Localization and Human-Target Path Planning

We demonstrate the increase in the human teammate’s
situational awareness in a scenario where the robot first
searches for and localizes targets, then assists the human
to each target.

A robot teammate navigates autonomously [13] to explore
the environment, locate candidate targets within a specified
area, and identify correct targets for human intervention.

In our experiment, we use AprilTags [17] for our targets.
Upon identification of a target, the robot visualizes the
location of the target to the human teammate and calculates
a path from the human’s position to the target using known
human pose information in the shared aligned coordinate
frame. That path is also visualized to the human via AR, and
the human uses this information to navigate to and reach the
target. At that point, the robot delivers the next target location
and path, if any are available. When all targets are reached,
the task is complete.

We demonstrate our system in two realistic environments.
The first is an indoor building space with clutter and ob-
stacles. The second is an outdoor environment consisting
of multiple concrete buildings and a street arranged as a
courtyard.

C. Results

The results of our experiment are depicted in the outdoor
courtyard environment in Figs. 3 and 4, and in the indoor
environment in Figs. 5 and 6.

For the outdoor environment, Fig. 3 shows the robot ex-
ploring the environment and performing autonomous SLAM,
and the corresponding indoor environment is in Fig. 5.
Figs. 3a-3d show the 2D occupancy map in ROS Rviz
constructed by the robot as it searches the environment for
targets in the outdoor environment, and Figs. 5a-5e for the
indoor environment example. Correspondingly, the respective
camera views from the robot’s perspective as it performs
target search are shown in Figs. 3e-3h for the outdoor
environment and Figs. 5f-5j for the indoor environment.

Because the autonomous robot has searched the environ-
ment for valid targets, and because we dynamically compute
the transformation to align robot and human coordinate
frames, the robot is able to provide situational awareness
through accurate navigation direction and target identification
to the human. When the robot finds a target (Figs. 3d, 3h
and 5e, 5j) the human is notified and provided navigation
and target location via the AR-HMD.

Using the AR navigation assistance provided autono-
mously by the robot, the human was able to efficiently
execute the path to each target. The human navigation is
depicted in Figs. 4 (outdoor environment) and 6 (indoor
environment). We show both the human navigation path

visualized as a line in ROS Rviz (Figs. 4a-4d and 6a-6d) and
from the human’s reality-augmented perspective (Figs. 4e-4h
and 6e-6h).

Over 30 trials run for these experiments, the human
teammate was able to locate the correct object 100% of
the time. While this is not a true human-studies trial, we
believe that this result, while anecdotal, is representative of
the efficiency of our approach. We can see that over the
course of the distance traveled in Fig. 6, the close AR marker
position relative to the correct physical position shown in
Fig. 6h shows a good frame alignment maintained by our
approach.

There are several observations that detail the challenges
of providing navigation and target localization assistance
to human teammates via AR, however. Planning for hu-
man navigation is not the same as planning for a robot,
as standard settings for robot navigation such as costmap
inflation are not appropriate. A human is both more agile
than most robots, but also has traversability preferences.
As can be seen in Fig. 4e, for example, a feasible path is
not always a comfortable path for a human, as the path
planned was too close to the walls and obstacles. Being
so close to obstacle, this path could additionally introduce
frame alignment issues if followed by the human. The AR-
HMD device also provides its own challenges, such as
limitations induced by its ability to sense and model the
environment using the onboard cameras. The Hololens we
used has a limited depth and field of view, compared to e.g.
a LiDAR, which results in a smaller, directed point cloud.
Further, to address warping caused by inconsistent alignment
in the global map provided by our AR-HMD device, we
performed our robot-to-human frame alignment using only
the local Hololens point cloud. Despite these challenges, we
see a promising path forward for using AR in human-robot
teaming applications, particularly those involving improving
human situational awareness in dangerous environments.

VI. CONCLUSION

We have shown that increased situational awareness can
be provided by a AR device from a robot to a human
teammate, for the purposes of enabling cooperative search.
This was achieved by detecting and localizing targets, as well
as providing navigation assistance to the human teammate to
efficiently reach each desired target. This was demonstrated
in a real-world field robotics context in two different en-
vironments, where the coordinate frames of the AR-HMD
and robot were aligned automatically without the need for
external instrumentation. We identified several challenges in
enabling cooperative human-robot search via AR. We believe
that this work represents an important first step in using AR
to provide situational awareness in human-robot teams in
field robotics settings.
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