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Abstract— Online change detection performed by mobile
robots has incredible potential to impact safety and security
applications. While robots are superior to humans at detecting
changes, humans are still better at interpreting this information
and will be responsible for making critical decisions in these
contexts. For these reasons, robot-to-human communication of
change detection is a fundamental requirement for successful
human-robot teams operating in such scenarios. In this work
we seek to improve this communication, and present the results
of a study that evaluates the interpretability of autonomous
robot-based change detections conveyed via mixed reality to
untrained human participants. Our results show that humans
are able to identify changes and understand the visualizations
employed without prior training. Our analysis of the limitations
of this initial study should be constructive to future work in
this domain.

I. INTRODUCTION

In safety- and security-critical domains, important infor-
mation can be conveyed by changes in the environment.
For example, the presence of a new object in an environ-
ment could indicate a survivor’s activity in a search and
rescue mission, or adversarial activity in a military mission,
depending on the object and scenario. A robot equipped
with perception sensors and change detection capabilities
can detect metric-based changes, but may not understand
the saliency or relevancy of these detections with respect to
the mission context and objectives. A human teammate, on
the other hand, might accidentally overlook these changes,
especially in visually complex environments or cognitively
taxing situations, but is typically more proficient at reasoning
about changes and taking the appropriate action.

A fundamental requirement of this human-robot team is
effective communication of information between agents. To
this end, an agent’s performance is directly impacted by
their ability to understand the information provided to them
by another agent; a robot can enable – or hinder – human
decision making in response to a detected change depending
on how the information is presented [1]. Already, we have
presented a mixed reality-based system that combines an au-
tonomous robot and augmented reality head-mounted device
(AR-HMD) for facilitating communication of robot-based
change detection [2]; however, presenting these detections in
a way that maximizes human understanding is a significant
challenge. Fig. 1 shows an example illustration of point-
based change detection; this paper seeks to address the
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Fig. 1. A robot constructs a relatively dense point-cloud-based map of
the environment, and detects changes in the point cloud (shown in red)
from a previous reading. This paper seeks to address the problem of
how an autonomous robot can convey point-based change detections for
interpretation by a human teammate.

problem of how a robot can convey detected changes to a
human teammate.

In this work, we strive to improve human-robot commu-
nication by empirically evaluating the comprehensibility of
our change detection interface using data from our system
operating in the real world. We present results from a user
study consisting of humans viewing changes detected and
indicated by an autonomous robot. The participants are not
provided with any a priori or supporting information aside
from the visualizations offered by the robot. The quality of
communication achieved by our interface is then quantified
by the human’s scene understanding as measured by their
ability to correctly identify changes in the environment.

II. RELATED WORK

Generally speaking, novelty detection refers to the iden-
tification of differences between test data and training data
or a model learned from that data [3]. Environmental change
detection is an application of novelty detection where an
initial model of the scene is built and used to compare
against new “test” data in order to identify physical changes.
An autonomous robot can perform change detection by
navigating through an operational environment and analyzing
the streaming data from its sensors with respect to the stored,
a priori model. Autonomous robot-based change detection
is useful in a range of domains including inspection [4],



surveillance [5], [6], safety and security [7], and robust out-
door navigation [8]. Change detections from an autonomous
robot can be made actionable by human teammates if they
are communicated effectively, which has previously been
performed using mixed reality systems [9], [10].

Augmented, virtual, and mixed reality technologies have
the potential to address critical communication issues by
mediating human-robot interactions [11], [12]. Augmented
reality visualizations have been shown to improve robot com-
munication, when combined with complex natural language
and gestures, regardless of human cognitive load in mixed
reality systems [13]. Augmented reality has also been shown
to be effective at efficiently communicating robot motion
intent in human-robot joint tasks [14].

In this work we seek to characterize the comprehensibility
of change detection communicated by an autonomous robot
to an AR-HMD. The study presented here quantifies the
performance of our previously proposed interfaces, including
when all detected changes are shown to the human [15]
as well as aggregated detection data [2]. We believe the
quantitative analysis offered in this work will support future
development of system improvements for conveying robot-
based change detection in a more human-understandable
fashion.

III. APPROACH

Our approach to communication of change detection infor-
mation begins with an autonomous robot detecting changes
in an environment relative to a prior model. The robot also
connects with a human wearing an augmented reality head-
mounted device (AR-HMD), and aligns its map with the AR-
HMD’s 3D map representation. This allows the robot to pass
information about changes detected to the human, which are
then visualized through AR. We discuss the specific details
of this implementation below.

A. Change Detection

The goal of our change detection capability is to auto-
mate the process of identifying and locating geometric-based
anomalies in the environment, such as the addition of new
objects, with respect to a given reference model. To do this,
a robot first creates a 3D model of the environment that
represents the known state of the world. The robot can then
continuously compare observations using its onboard sen-
sors during any subsequent traversals, which can ultimately
provide enhanced situational awareness and alleviate the
required workload for a human to monitor an environment.
Here, we provide a brief overview of our approach to change
detection and direct the reader to our previous works for
additional details [15].

Our change detection algorithm builds the 3D model and
test representations of the environment using OmniMap-
per [16], [17], a pose graph-based Simultaneous Localization
and Mapping (SLAM) algorithm that computes a solution to
the robot’s trajectory from the robot’s LiDAR and inertial
measurement unit (IMU) sensors. We also compute the
homogeneous transformation matrix between the robot and

human using the Iterative Closest Point algorithm [18] to
provide a common coordinate frame that is necessary for
accurately displaying visual information, such as change
detection markers in the human’s AR-HMD. Given a model
point cloud, the robot detects changes in a test cloud using
a set of difference segmentation functions and outlier filters
implemented in Point Cloud Library [19]. For every point in
the test cloud, the nearest point and corresponding distance
in the model cloud is computed by constructing KD-trees
that reduce the quadratic search complexity to n log n,
which supports real-time operations. If the distance between
two corresponding points is greater than a threshold δ, it
is denoted as a change and accumulated in the change point
cloud. After all points have been evaluated, the change cloud
is filtered to reduce noise by excluding any points with less
than a threshold quantity λ within a radius r.

One of the paramount challenges for change detection
solutions is overcoming the various potential sources of error,
e.g., inherent range error from the sensor, quantization error
from the SLAM algorithm, and distance computation error
from variance in viewpoints between clouds. Error plays
an important role in human understanding because it not
only decreases the performance of the change detection
algorithm, but further complicates the communication of
mission-relevant information to the human due to degraded
or unexpected visualization. In the presence of error, the
visualization of detected changes may not align precisely
with objects in the scene or could appear in void space, which
can become distracting or confusing for the human. While it
is possible humans may be capable of mitigating the effect of
imperfect change detection through proper training and field
experience, future work will seek to improve the quantitative
performance of our change detection algorithm.

B. Aggregation of Change Data for Visualization

In order for changes to be interpreted by a human user,
they must be presented to the human. Augmented reality
has been shown to offer a situated and salient means of ac-
complishing interpretable information exchange from robots
to humans [11]. We have previously demonstrated using AR
technology to convey raw change detection information from
a robot to its human teammate [15]. However, an open chal-
lenge exists in that raw changes detections generated from
real-world field environments by robots with high-resolution
sensors may be difficult for a human to interpret. This could
be because of the quantity of changes, the significance of for
example small changes below a threshold of interest (e.g.,
leaves blowing on a tree), or data noise from sensors.

To address this challenge, we propose using data aggrega-
tion methods for the ultimate purpose of creating change vi-
sualizations that are more interpretable by human teammates
without losing representational ability. We use an approach
similar to what was previously presented as a concept [2]
to cluster detected changes. In particular, we use Density-
Based Spatial Clustering of Applications with Noise (DB-
SCAN) [20]. We selected this method for aggregation after
empirical comparison with other state-of-the-art clustering



techniques, and note that it has several advantages that make
it robust to real-world environments, including incorporation
of noise and robustness to outliers, as well as handling a
non-a priori-specified number of irregularly-shaped clusters.

After the change detections are clustered, we discard
outliers and generate a visualization for each cluster. Because
of the density of the point cloud sample corresponding to any
changed object is relative to a number of factors, including
the size of the object, the sensor resolution, and the distance
and angle between the sensor-equipped robot and the object,
the change detection points are only a small representation
of the exposed surface of the changed object. For this reason,
our visualization must approximate the location and size of
the object without full knowledge of its shape or bounds.
Therefore, for each change cluster we generate a spherical
visualization, centered on the cluster centroid, with radius
scaled by the intracluster distance of the change cluster.

The robot then publishes these changes in real-time to gen-
erate visualizations on the human-worn AR-HMD. Because
of the online alignment of human and robot pose discussed
in Sec. III-A, these change detections generated by the robot
are able to be presented live in AR to the human teammate. In
our experiments, we are then able to present both raw change
detections and change detection clusters in this manner for
comparison.

IV. EXPERIMENTS

To provide an initial evaluation of the interpretability of
change detection visualizations in augmented reality, a video-
based study with crowd-sourced participants was conducted.
The intent of this study was to determine how interpretable
the change visualization methods proposed were to untrained
human study participants. This will provide understanding
for the representation and presentation of change information
for future in-person studies and system design.

A. Hardware

Our change detection algorithm can be run on any robot
that has an onboard LiDAR sensor, IMU sensor, and suf-
ficient computing resources. In our experiments, we used
a Clearpath Robotics Jackal mobile ground robot equipped
with a Velodyne VLP-16 LiDAR, MicroStrain 3DM-GX4-
25 IMU, and Intel Core i5-4570TE CPU. The robot was
teleoperated by the experimenters around the environment,
described in Section IV-B, to build the initial model and test
clouds. Change detection was performed online by the robot
and visualization was communiated to a human wearing a
Microsoft Hololens AR-HMD via a Ubiquiti Bullet M5HP
5 GHz WiFi radio. The experimenters visualized the change
detection markers in real-time and recorded videos of this
visualization to present to participants in a user study.

B. Environment

Experiments were conducted in a large (∼ 200m2) indoor
laboratory setting (Fig. 2) to control for any changes that
would be extraneous to the experiment. Three identically-
sized ∼ 0.5m cubical cardboard boxes were used as the

objects-of-interest that were subject to change. In each
experimental scenario, zero, one, or two boxes were added
to the scene. All boxes were placed in fixed, evenly spaced
positions roughly equally distant from the human viewer.
While no other objects were physically co-located with the
boxes, the background and sides of the image had numerous
visible features, such as cabinets, a door, and markings on
the floor.

C. Experimental Procedure

Each experiment consisted of two phases: the collection of
an initial point-cloud map by the robot, and an exploration
phase where the robot collected a change model. In the
initial phase, one, two, or – in the baseline case – three
boxes were present. In between the phases, the experimenters
added the missing boxes to their predetermined positions as
described in Sec. IV-B. Then, during the change phase, the
robot maneuvered through the setting autonomously creating
a new 3D map of the environment and comparing that map
against the map created during the initial phase.

Differences between the two maps were treated as
changes, as described in the approach in Sec. III-A. For the
change detection and noise-reduction thresholds described
in Sec. III-A, we use δ = 10 cm, λ = 10 and r = 30
cm. Through real-world experimentation and validation using
multiple models of LiDAR sensors with varying resolutions
and fields of view, we have empirically discovered that these
parameter values work well for online, incremental change
detection [15].

Changes were then processed and visualized via AR as
described in Sec III-B. This mapping, change detection, and
change visualization is performed online. Details of this
online process are found in [15]. Briefly, we assume the
robot and AR-HMD can communicate wirelelessly; in our
system the Hololens connects directly to the robot via an ad-
hoc network, as robust field-capable multi-agent networking
is outside the scope of this paper. The Hololens’ built-in
3D visual SLAM-based mesh map is converted onboard to
a point-cloud representation and transmitted to the robot,
where the change detection step is performed. Alignment
of the robot and AR-HMD frames are also calculated
and maintained by the autonomous roobt. This allows for
appropriately-positioned visualizations to be shown to the
human teammate via AR. Detected changes to converted
to the different visualizations used in this experiment, and
shared wirelessly back to the Hololens AR-HMD. The entire
system operates online on the specified hardware in the
experimental environment at approximately 1-3 frames per
second, which is sufficient for this evaluation.

For our experiments, a human wears the AR-HMD dur-
ing multiple change detection scenarios. Videos of the AR
feed, including both real video and visual augmentations,
were captured using the HoloLens built-in video capture
capability. Three types of visualizations were generated for
comparison in a user study: 1) visualization of the raw
point-change data as fixed-size red spheres (Fig. 2a), 2)
visualization of the change detection clusters as blue spheres



(a) Middle changed; point-based visualization. (b) Middle changed; cluster-based visualization. (c) Middle changed; both visualizations.

(d) Left changed; point-based visualization. (e) Left changed; cluster-based visualization. (f) Left changed; both visualizations.

(g) Left + right changed; point visualization. (h) Left + right changed; cluster visualization. (i) Left + right changed; both visualizations.

Fig. 2. Examples of the raw point visualization, aggregated cluster visualization, and combined visualization techniques used to indicate the robot’s
detected changes in a lab environment, in three different change configurations. In (a)-(c), the middle box changed from the initial model; the left and
right boxes were present in the initial model. In (d)-(f), the left box changed. In (g)-(i), the left and right boxes were changes from the initial model.

of scaled size (Fig. 2b), and 3) visualization of both 1) and
2) together (Fig. 2c). Videos for each of these three types
of visualizations, with all combinations of box locations, for
zero (baseline), one, and two boxes changed were generated,
for a total of 19 videos: 1 (no changes) + 32 (one change)
+ 32 (two changes).

D. User Testing

To test if humans can understand the changes in the
environment as visualized, we conducted an evaluation with
human subjects (approved by the University of Denver IRB
1770133-1). Due to restrictions in in-person experimental
events imposed during the COVID-19 pandemic, an online
study was necessary to perform this evaluation. In the online
study 21 participants were shown 19 videos with either 0,
1, or 2 actual changes visualized (true positive) in either red
(point-based), blue (cluster-based), or both spheres as shown
in Figure 2 and several false positive objects highlighted by
the algorithm. Two participants were excluded, one for not
accepting to participate, and the other for completing the
survey in 78 seconds. This left a total of 19 participants
(Mage = 36.1, SDage = 7.7, 12 Male, 7 Female). The
participants’ exposure to computer games was measured to
gauge their experience as a very high or low exposure could
influence how they interpret the visualization. On a scale

from 1 (“never”) to 5 (“daily”), none of the participants
answered “never”. The average for computer games was at
Mgames = 3.7 (SDgames = 1.1), which can be considered a
slightly higher exposure than the Expected Value of 3. When
divided into Action games (Maction = 2.9, SDaction =
1.2)), Strategy games (Mstrategy = 2.8, SDstrategy = 1.0)),
and Puzzle games (Mpuzzle = 2.7, SDpuzzle = 1.3)),
the average exposure is around the Expected Value and an
analysis of variance shows no significant differences among
or between the groups (F (2, 54) = .17.p = .84). This leaves
the assumption that the visualization interpretation results are
not significantly or systematically influenced by high or low
computer game exposure. The videos were shown in random
order, not altered and represented the algorithmic outcomes
as described in III-A and as visualized in III-B to test the
hypotheses on the visualization.

It was hypothesized that H1: Humans can understand
the changes detected without prior training and that H2:
understand changes with at least 90% accuracy. “Understand-
ing” is defined as correct identification of a true positive
using only the information provided by the robot. In the
videos, participants only saw what the algorithm highlighted
and did not have a-priori data about how the environment
appeared before the change. Participants had no additional
information that would otherwise facilitate decision making.



For each video, participants were asked to indicate which
object was highlighted by the algorithm as a change. Then
objects from the videos were listed and participants indicated
on a rating scale (object “definitely did not change”, “likely
did not change”, “likely changed”, “definitely changed”) how
they perceived the visualization. With this scale, it could be
identified how many objects participants correctly identified
as well as the areas where they were unsure what true
positive changes the visualization of the algorithm showed.

V. RESULTS AND DISCUSSION

To evaluate H1 we calculated the participants’ hit rates,
the proportions of trials in which the video stimuli was
presented and the participants correctly responded. Out of
the 152 possible answers to changes in the presented video,
67 (44%) have been answered absolutely correct at a 100%
confidence level. This measure only includes when all partic-
ipants unanimously answered that a stimuli is definitely (not)
present. It does not include potential variations in the data
when participants answered “likely (not)”. To capture this
data at the 90% confidence level, we calculated an average
score for each question and out of the 152 possibilities, 117
(69%) changes were correctly identified with 90% confidence
(Fig. 3).

Fig. 3. The differences of correctly identified changes and not identified
changes for all possibilities and looking at the possible true positives (Boxes)
only. Error bars are standard errors.

Similarly, when we evaluated H2 looking only at possible
true positives on a 90% confidence level (i.e. only the boxes
could be true positives), 68% were identified correctly. To
identify how different those results for all 152 possibilities in
the stimuli as well as for possible true positives (Boxes) only,
a simple t-test compared the respectively correctly identified
and not identified changes. For both, the results (t(36) =
3.73, p = .0003 and t(36) = 7.37, p < .0001) show that the
correctly identified changes are significantly higher and not
due to chance.

Combining the participants’ interpretations into a binary
score (i.e. combining “likely” and “definitely”) and calculate
correctly identified changes, the data shows that participants
identify changes 75% correctly when the video stimuli shows
one change, and only 49% correctly when two changes are
visualized.

An analysis of variance was performed to identify po-
tential differences between the three different stimuli types
(point-, cluster-based, both) and did not show any significant
differences between or within the three types.

These results confirm H1 and H2 in part only. Participants
are able to identify changes and understand the visualization
without prior training. The results also show that there is
some confusion on how to distinguish false positive from
true positive changes.

One of the limitations in this evaluation was that while the
visual augmentations were positioned in three dimensions,
because the videos were recorded with a fixed perspective
(i.e., the AR-HMD wearer did not move), the visualizations
may appear two-dimensional to the study participants. Minor
errors in point cloud alignment discussed in Sec. III-A
sometimes result in visualizations placed slightly to the side
or above the detected change. Further, no training or a
priori information was provided to the users, meaning that
misinterpretations of the visualizations in the video stimuli
are not corrected for in the obtained data. Also, as noted in
Sec. IV-B, the environment contained numerous background
objects which were included in the survey. Together, these
issues may have exaggerated the likelihood of false positives
(see Fig. 2c for example, where a red marker above the
changed box visually intersects with the cabinets in the
background). Some participants stated in their comments an
unprompted interpretation of the visualization colors and the
location of the points or clusters that was not mentioned
at any point in the experimental description. This indicates
that without any training on the current visualization, people
might associate meaning to parts of the visualization that do
not have any.

Overall, these results show a clear proof of concept
that the visualization succeeds at highlighting environmental
changes and can be understood by an untrained human user.
For future studies, we are considering the implications and
limitations to change the video stimuli for online studies [21]
using moving perspective so that the visualization does not
appear two-dimensional. We will also study the impact of
better informed users by incorporating a short training video
for the user study on how changes in the environment are
visualized by the robot. A replication of this study in the
future with in-person participants being able to perceive the
visualization in three-dimensions is anticipated to introduce
more clarity into the information the visualization displays.
In future user study investigations we will introduce primary
or secondary tasks in addition to the change detection
interpretation to better understand the effects on situational
awareness, performance, and mental workload [22], [23].

VI. CONCLUSION

In this work, we have presented an autonomous robot
change detection and communication system and the results
of a study that shows that humans are able to understand
change detections communicated by a robot to a human via
augmented reality. The results show no significant difference
between the visualization strategies employed; however, we



believe this could be induced by the fixed-perspective video
collection method, combined with slight errors in point cloud
alignment. In future work, we intend to address both the
alignment issues as well as experiment with perspective-
varying video collection. This work will also be highly
informative to planned future in-person studies ultimately
aimed at creating a more robust and interpretable change de-
tection visualization system for enhanced human situational
awareness.
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[5] P. Núñez, P. Drews, R. Rocha, M. Campos, and J. Dias, “Novelty
detection and 3d shape retrieval based on gaussian mixture models
for autonomous surveillance robotics,” in 2009 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2009, pp. 4724–
4730.

[6] A. W. Vieira, P. L. Drews, and M. F. Campos, “Spatial density patterns
for efficient change detection in 3d environment for autonomous
surveillance robots,” IEEE Transactions on Automation Science and
Engineering, vol. 11, no. 3, pp. 766–774, 2014.

[7] M. Sturari, M. Paolanti, E. Frontoni, A. Mancini, and P. Zingaretti,
“Robotic platform for deep change detection for rail safety and
security,” in 2017 European Conference on Mobile Robots (ECMR).
IEEE, 2017, pp. 1–6.

[8] B. Sofman, B. Neuman, A. Stentz, and J. A. Bagnell, “Anytime online
novelty and change detection for mobile robots,” Journal of Field
Robotics, vol. 28, no. 4, pp. 589–618, 2011.

[9] C. Reardon, K. Lee, J. G. Rogers, and J. Fink, “Augmented Reality
for Human-Robot Teaming in Field Environments,” in International
Conference on Human-Computer Interaction: Virtual, Augmented, and
Mixed Reality. Springer, 2019, pp. 79–92.

[10] J. M. Gregory, C. Reardon, K. Lee, G. White, K. Ng, and C. Sims,
“Enabling intuitive human-robot teaming using augmented reality and
gesture control,” arXiv preprint arXiv:1909.06415, 2019.

[11] D. Szafir, “Mediating Human-Robot Interactions with Virtual, Aug-
mented, and Mixed Reality,” in International Conference on Human-
Computer Interaction. Springer, 2019, pp. 124–149.

[12] K. S. Haring, V. Finomore, D. Muramoto, N. L. Tenhundfeld, J. Wen,
and B. Tidball, “Analysis of using virtual reality (vr) for command and
control applications of multi-robot systems,” in Proceedings of the 1st
International Workshop on Virtual, Augmented, and Mixed Reality for
HRI (VAM-HRI), 2018.

[13] N. Tran, T. Grant, T. Phung, L. Hirshfield, C. Wickens, and
T. Williams, “Get this!? mixed reality improves robot communication
regardless of mental workload,” in Companion of the 2021 ACM/IEEE
International Conference on Human-Robot Interaction, 2021, pp. 412–
416.

[14] E. Rosen, D. Whitney, E. Phillips, G. Chien, J. Tompkin, G. Konidaris,
and S. Tellex, “Communicating robot arm motion intent through mixed
reality head-mounted displays,” in Robotics research. Springer, 2020,
pp. 301–316.

[15] C. Reardon, J. Gregory, C. Nieto-Granda, and J. G. Rogers, “Enabling
Situational Awareness via Augmented Reality of Autonomous Robot-
Based Environmental Change Detection,” in International Conference
on Human-Computer Interaction: Virtual, Augmented, and Mixed
Reality. Springer, 2020, pp. 611–628.

[16] A. J. Trevor, J. G. Rogers, and H. I. Christensen, “Omnimapper: A
modular multimodal mapping framework,” in 2014 IEEE international
conference on robotics and automation (ICRA). IEEE, 2014, pp.
1983–1990.

[17] J. Gregory, J. Fink, E. Stump, J. Twigg, J. Rogers, D. Baran, N. Fung,
and S. Young, “Application of multi-robot systems to disaster-relief
scenarios with limited communication,” in Field and Service Robotics.
Springer, 2016, pp. 639–653.

[18] A. Segal, D. Haehnel, and S. Thrun, “Generalized-ICP,” in Robotics:
Science and Systems, vol. 2, no. 4, 2009, p. 435.

[19] R. B. Rusu and S. Cousins, “3D is here: Point cloud library PCL,”
in 2011 IEEE International Conference on Robotics and Automation.
IEEE, 2011, pp. 1–4.

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al.,
“Scikit-learn: Machine learning in python,” the Journal of machine
Learning research, vol. 12, pp. 2825–2830, 2011.

[21] D. Feil-Seifer, K. S. Haring, S. Rossi, A. R. Wagner, and T. Williams,
“Where to next? the impact of covid-19 on human-robot interaction
research,” 2020.

[22] R. Parasuraman, K. A. Cosenzo, and E. De Visser, “Adaptive automa-
tion for human supervision of multiple uninhabited vehicles: Effects on
change detection, situation awareness, and mental workload,” Military
Psychology, vol. 21, no. 2, pp. 270–297, 2009.

[23] R. van der Kleij, T. Hueting, and J. M. Schraagen, “Change detection
support for supervisory controllers of highly automated systems:
Effects on performance, mental workload, and recovery of situation
awareness following interruptions,” International journal of industrial
ergonomics, vol. 66, pp. 75–84, 2018.


