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ABSTRACT

Robots, equipped with powerful modern sensors and perception algorithms, have enormous potential to use what
they perceive to provide enhanced situational awareness to their human teammates. One such type of information
is changes that the robot detects in the environment that have occurred since a previous observation. A major
challenge for sharing this information from the robot to the human is the interface. This includes how to
properly aggregate change detection data, present it succinctly for the human to interpret, and allow the human
to interact with the detected changes, e.g., to label, discard, or even to task the robot to investigate, for the
purposes of enhanced situational awareness and decision making. In this work we address this challenge through
the design of an augmented reality interface for aggregating, displaying, and interacting with changes detected
by an autonomous robot teammate. We believe the outcomes of this work could have significant applications
to Soldiers interacting with any type of high-volume, autonomously-generated information in Multi-Domain
Operations.
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1. INTRODUCTION

Imagine a squad patrolling a visually complex environment, such as in Fig. 1, searching for signs of recent
activity. The squad’s robot navigates in advance of the team autonomously, and compares its sensor readings
to previous measurements taken by the last team to move through the area. The robot’s perception and change
detection algorithms are capable of detecting small variations between those measurements that human eyes
would normally miss. But interpreting those detected changes is difficult for the robot. A human teammate is
much better equipped to reason about the mission context in order to determine which changes are innocuous
and which could be informative and useful.

With one or more Soldiers in the squad equipped with augmented reality head-mounted devices (AR-HMDs),
the robot can easily stream its detections to a Soldier for interpretation and potential action. An autonomous
robot equipped with powerful sensors and perception algorithms will have access to a large amount of raw
and processed data, however. Therefore, a significant challenge for this important and valuable robot-human
communication is how to determine what information should be shared and how it should be presented to the
human Soldier for interpretation and interaction.

In this work, we address this challenge through the design of an augmented reality interface that aggregates
change detections taken from a robot operating in the real world and provides a display to a human via an
AR-HMD for interpretation and interaction. We present initial results from our change detection aggregation
approach and corresponding visualization design. We believe that this is the first work to address the design
of a robot-to-human mixed reality interface for communicating change detections from an autonomous mobile
robot. The outcomes of this work have potentially broader applications to Soldier interaction with the sort of
high-volume information generated by autonomous agents in Multi-Domain Operation (MDO)1 settings.
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Figure 1: The autonomous robot-based change detection concept. A robot patrols a visually complex envi-
ronment and conveys information via augmented reality about its position (cyan box) and aggregated change
detections (red circles) to a nearby Soldier wearing an AR head-mounted display (inset). The aggregated change
detection visualizations support interaction to allow the Soldier to task the robot to further investigate a suspi-
cious change.

2. BACKGROUND AND RELATED WORK

The system presented here builds upon previous works by the authors in enabling robust human-robot teaming
using mixed reality.2,3 Augmented, virtual, and mixed reality technologies have a strong potential to address
issues of communication in human-robot interaction.4 The significant challenge of course is knowing how to
share the appropriate information in a positively impactful manner.

Autonomous robot-based change detection has applications in many areas, such as inspection,5 surveillance,6,7

safety and security,8 and robust outdoor navigation.9 In recent work, communication of novel change detection
from an autonomous robot to a human teammate was enabled, and the impact of different resolution point
clouds from 16 and 32 bit LiDAR sensors on the change detection communication interface was examined.10 In
general, novelty detection is a research area where differences in test data from training data or a model learned
from that data are identified.11 The type of environmental change detection we employ here is an application
of novelty detection where physical changes are continuously identified through comparison of new “test” data
with a previously generated model.

In this work we look beyond communication of all changes detected as was done previously,10 which in
large, complex environments with many change points could be visually and cognitively overwhelming. This
work addresses that shortcoming through aggregation of change detection data to reduce the volume of visual
information and support interaction with groups of individual change detections.

3. APPROACH

Our approach assumes a mobile robotic platform capable of autonomously performing simultaneous localization
and mapping (SLAM) which requires continuous perception and construction of an accurate representation of
the environment. We then utilize this perceptive capability specifically for the purpose of performing change
detection using a point-cloud-type model.

Motivating our approach is the belief that while a robot is better capable of perceiving an environmental
change, a human teammate will have access to more contextual information that critically will enable the human
to better process and reason about possible changes in the environment, i.e., what changes are real, and of those
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what changes are important given the mission context. Further, given a robot equipped with high fidelity sensors
operating in the type of complex real-world environments where MDO will occur, we expect there will be a large
number of changes for the human to process.

In anticipation of large volumes of potential change information, we therefore incorporate into our approach
aggregation of real-world change detection data and visual presentation through an AR-HMD to a human
teammate.

3.1 Change Detection

Our change detection approach utilizes a point-cloud-based knowledge representation of the environment. In
our implementation, this is generated from a robot using a LiDAR laser scan sensor, but generalizes to other
functionally equivalent sensors (RGB-D, structured light, stereo motion, etc.). The representation is generated
by our SLAM process discussed previously.10 Fundamentally, the output of the SLAM process is a point cloud
that accurately represents the environment, which is accumulated and optimized as the robot maneuvers through
the environment.

Algorithm 1: Change Detection Process

Result: Change model of all changes in the environment
while Making initial scan do

Navigate the environment;
Create an initial model of the environment.

while Looking for changes do
Navigate the same environment;
Create a test model of the environment;
Compare the test against the initial model;
Output the changes between the models as a point cloud for Aggregation and
Visualization.

The general process for change detection is shown in Alg. 1 and is composed of two major steps: Making an
initial scan, which generates the initial model point cloud, and Looking for changes, where a test model cloud
is collected and compared against the initial model. Example initial models can be seen in Fig. 2. Note that
the Compare and Output steps of change detections in the second while loop (Looking for changes) can be
performed either online, as the robot is patrolling the environment, or as an offline process after the test model
is created.

For the Compare step, the initial and test models begin in approximately the same reference frame, and the
alignment is refined with a generalized Iterative Closes Point (ICP) process.12 With fully aligned models, the
change detection can then be performed in PCL13 using a set of difference segmentation functions and outlier
filters as described in.10 In the Output step, the changes are accumulated into a new change model point
cloud which is used as input for the Aggregation and Visualization process. For our experimental purposes, we
focused on change additions to the environment, but the general approach is appropriate for both additions and
deletions.

3.2 Change Aggregation and Visualization

Once the changes have been detected and outputted, they can be presented to the human for interpretation, as
was done previously.10 However, even in the test environments we chose there were hundreds to thousands of
point changes, so that even if they are collectively interpretable, they are not individually actionable. Therefore,
in this work we propose aggregating changes and presenting information about those aggregations to the human
teammate via mixed reality. The human teammate can then more easily interpret, as well as interact with, the
changes.

To aggregate changes we utilize Density-Based Spatial Clustering of Applications with Noise (DBSCAN).14

DBSCAN has several properties that are advantageous for our application, including not requiring a pre-specified
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(a) Alley environment, side view (b) Driveway environment, top-down view

Figure 2: Example initial model point clouds

number of clusters, ability to find arbitrarily-shaped clusters, incorporation of noise, and robustness to outliers.
For our application of DBSCAN we used ε = 1.0, min samples = 5, and the euclidean distance metric.

The change aggregation and visualization process is shown in Alg. 2. The raw change model from Alg. 1
is used as input. When a change model is received, we Cluster the changes using DBSCAN and convert each
cluster to Create a visualization and interaction object. The final step is to Publish each object from the robot
to the AR-HMD worn by the human.

When designing the visualizations for the aggregated changes, we noted that despite the relatively high
density of the point clouds generated by the LiDAR, finding a distinct edge of a change is difficult. Therefore,
we design our change locations as spherical regions, similar to the concept image Fig. 1. We also label each
with a unique text identifier to facilitate voice commands (not covered in this paper). Finally, to aid in visual
differentiation and to convey the size of each cluster, we scale the radius of the visualization relative to the radius
of the clustered change detection.

Algorithm 2: Change Aggregation and Visualization Process

Result: Change detection visualizations {(x, y, z), radius} based on clustered
point changes

while Looking for changes do
if Received change model then

Cluster changes using DBSCAN;
for each cluster do

Create a data visualization and interaction object based on cluster
location and radius;
Publish the visualization via the robot-AR-HMD interface.

4. EXPERIMENTS

We validate our approach using data collected from a robot operating in two real-world environments performing
change detection.

4.1 Hardware

The hardware used in these experiments is shown in Fig. 3. In particular, for the robotic platform we used one
Clearpath Robotics Jackal mobile ground robot (Fig. 3a). The Jackal measures 0.508×0.430×0.250 m and has a
maximum linear velocity of 2.0 m/s. Ours is equipped with an Intel Core i5-4570TE CPU and used Ubuntu 16.04
and the Robot Operating System (ROS)15 for its operating system and middleware, a Velodyne VLP-16 LiDAR
for creating the point-cloud models, a MicroStrain 3DM-GX4-25 inertial measurement unit (IMU) for improved
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(a) Clearpath Robotics Jackal robot and sensors (b) Microsoft Hololens AR-HMD

Figure 3: Experimental Hardware

mapping and state estimation performance, and a Ubiquiti Bullet M5HP 5GHz WiFi radio for communications.
For the AR-HMD, we used a Microsoft HoloLens shown in Fig. 3b.

4.2 Environments

The two environments used in these experiments, referred to as the “alley” and “driveway” environments are
shown in Figs. 4a and 4b, respectively. The alley environment is purpose-constructed to emulate a narrow
alleyway in an urban setting, complete with multi-story buildings and doorways. The driveway environment is
an approximately 7m-wide paved lane with an adjacent paved parking area for three vehicles, surrounded by
grass and trees. Example 3D point clouds for the initial models of each are shown in Fig. 2.

4.3 Experimental Procedure

For these experiments, the robot first collected data and built an initial model of the environment, similar to
Fig. 2. Then, the environment was changed through the deliberate addition of objects. After the change, the
robot re-visited the environment and performed the change detection steps detailed in Sec. 3.1. The resulting
change model was then used to perform the aggregation and visualization process from Sec. 3.2. For this work,
this process was performed offline using the complete change model because of restrictions limiting in-person

(a) Alley environment (b) Driveway environment

Figure 4: Experimental Environments
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experimentation due to COVID-19. As noted in Sec. 3, our method is designed to work interchangeably for both
online and offline processing.

5. RESULTS AND DISCUSSION

Using the change model, our results show that we are able to successfully process the model, aggregate changes
using the clustering method selected, and visualize the changes. Fig. 5 shows the overall outcomes. In Figs. 5a
and 5b, we see the objects introduced to the empty environments from Fig. 4.

In Figs. 5c and 5d, we see the result of the aggregation process where individual changes are clustered,
with the gray sphere indicating the cluster centroid. For these results we identify both true and false positive
detections; of course in a real application this information would not be known to the robot. Because few change
points fell upon the soccer ball in Fig. 5a, these points were discarded and therefore no change cluster is found
for that object in Fig. 5c. Of significant note is there are many more false positive detections in the outdoor
environment, most likely due to small changes from wind moving leaves, grass, and trees between the initial and
test models.

In Figs. 5e and 5f, we see the results of our aggregated change visualization design. Each change cluster is
localized, given a unique text label, and the radius of the visualization marker is scaled to match the radius of
the cluster. These text and symbolic visualizations will facilitate interaction by speech and gesture (e.g., virtual
“clicking” on a marker in mixed reality) in future work.

6. CONCLUSION

In future applications of MDO, human Soldiers and autonomous robotic platforms will be teamed together and
operate in complex environments. One significant application for team operation is detection of changes, where
the robot uses its sensing and perception capabilities to detect changes, and must convey those detections to
its human teammates. One significant challenge for this vision to be realized is how the robot should distill,
aggregate, and present those changes to the human for successful interpretation. Previous work10 presented a
system where a robot autonomously navigates and environment, performs change detection, and presents that
information to the human; however, it did not address this important challenge. In this work, we have presented
an approach to address this challenge, and demonstrated its capabilities by incorporating our expanded approach
into a complete human-robot change detection system.

Future work will include experimentation with human participants to validate the data aggregation and
visualization design decisions. Further, incorporation of methods robust to noisy environments, both from a
robot intelligence and interface design perspective, will be explored. We believe that this work has significant
potential implications for useful and practical human-autonomy teaming in real-world MDO environments.
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(a) Changes introduced to the alley (circled) (b) Changes introduced to the driveway (circled)

(c) Plot of clustered change detections in alley. Gray
sphere indicates centroid. Note that change detections
for soccer ball were few and were discarded as outliers.

(d) Plot of clustered change detections in driveway. Gray
sphere indicates centroid. Note that in this outdoor en-
vironment, there were many false positive detections.

(e) Visualization output of aggregated and scaled changes
for alley.

(f) Visualization output of aggregated and scaled changes
for driveway.

Figure 5: Change detection aggregation and visualization.
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