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In the face of a worldwide teacher shortage, and a critical
shortage of special education teachers in the United States,
there is an urgent demand for educational resources. For peo-
ple with intellectual and developmental disabilities (I/DD) in
particular, there is a compelling need to develop educational
tools and strategies to facilitate independence and self-
sufficiency, and to address poor employment outcomes in
adulthood.

When provided with the capabilities to make intelligent
decisions, robots and other assistive devices have a signifi-
cant potential to address this problem and empower people
with disabilities by providing instruction and educational
support. Robots and assistive devices possess important
features including situatedness, embodiment, precision, tire-
lessness, scalability, and context awareness that make them
particularly advantageous in the instructional role.

Intelligent systems, be they robots, augmented reality
systems, or other technologies, need to make decisions when
interacting with humans for instruction. In this article, we
introduce the use of response prompting as a basis for
this decision making and discuss the construction of a
complete system around this cognitive approach that includes
perception and interaction. Our goal is to provide cognitive
capabilities for an intelligent robot instructor (IRI), and
also demonstrate its generalizability across technologies and
modalities. Specifically, we teach participants advanced skills
with an IRI. We also explore similar instruction strategies on
a different type of hardware through the use of a portable
augmented reality (AR) assistive device to teach three ad-
ditional skill sets, including the simpler prerequisite skills
for the tasks taught by the IRI. We present the results of
a formal study showing the effectiveness of this approach
for teaching college-age students with I/DD. Our results
show that proven education methodologies can be leveraged
to provide intelligent autonomous instruction to students
with I/DD. We expand upon several findings that may be
constructive towards other efforts to create IRI systems, and
conclude with open challenge areas.
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Fig. 1. Illustration of our Intelligent Robot Instructor.

I. INTELLIGENT ROBOTS FOR INSTRUCTION

A strong case exists for investigating the use of IRIs to
teach human pupils [1]. The more time a teacher spends with
a student, the better the student learns. If an IRI such as the
one in Fig. 1 were capable of assisting a human teacher
by providing instruction to students in a classroom setting,
it could offload some of the tasks of the teacher, thereby
increasing the amount of time available for the teacher to
spend with individual students. In the face of future teacher
shortages and increasing classroom sizes [2], [3], [4] the
ability of an IRI to augment a human instructor’s teaching
could allow for better use of limited (human) teaching
resources.

Robots have several strengths that can be leveraged in an
instructor role. A robot is tireless, and a well-engineered
robot could have nearly unlimited energy and attention for
assisting students. The precision of a robot would enable
it to provide perfectly timely instructions, and would avoid
issues and mistakes that human instructors face. One robot
could potentially observe and instruct large numbers of
students simultaneously. Pupils could perceive robots as less
judgmental than a human, and therefore would be more
likely to request repeat instruction (e.g., ask the question
again) until a lesson was fully learned. To youth already
comfortable with using technology to learn, a robot could



represent an embodied and more physically-interactive tool
for learning than a personal computer or mobile device.
Indeed, several studies have shown that embodiment is
beneficial for human interaction with intelligent systems, for
purposes such as robot tutoring [5], engaging cognitively
impaired and/or Alzheimer’s patients for treatment [6] and
obeying instructions and affording robots aspects of human
interaction such as personal space [7].

We believe Students with I/DD in particular have a high
potential benefit from IRIs for several reasons. Young people
with I/DD entering adulthood today face harsh realities, such
as low employment rates, poor wages and benefits, limited
community supports, and low rates of independent living [8].
In addition to the advantages of an IRI discussed above, the
types of tasks commonly taught to students with I/DD lend
themselves well to robot demonstration and observation. One
area, for example, is the teaching of life skills, which refers
to knowledge or skills that increase a person’s independence
in personal, community, or job life. Particularly relevant
to the educational experiments conducted in this work are
vocational and functional academic domain task skills that
one would encounter in daily life.

Robots have successfully been used to instruct students.
Many such studies focused on using the robot as an instruc-
tional tool, employing Wizard-of-Oz (WoZ) approaches [9],
[10] or partially-WoZ approaches [11], or using the robot
as an embodied recording of speech and gestures following
a script [12]. A Nao IRI was used a decision-tree-type
framework to autonomously teach students in [13], [14];
however, whereas this instruction was for math skills using
multiple-choice response types, our work is more ambitious
in that it employs an IRI teach a variety of skills involving
math, geometry, and object manipulation, and further shows
that our approach generalizes to other intelligent systems
(i.e., an AR device).

All of this research shows promise for robotic instructors.
The high-level goals of this work are to demonstrate the
following:

• Established educational methodologies can be adapted
to help intelligent systems autonomously make instruc-
tional decisions

• Knowledge and representational gaps between what is
defined in modern educational methodologies and a
workable implementation for an intelligent, embodied
system such as a robot, can be identified and addressed

• Unique aspects of robotic and intelligent systems would
strongly benefit populations in great need of educational
support

This work attempts to address these open issues by adapting
proven methods used for instruction in the education field
to the decision making process of an IRI. The approach is
then used to teach students with intellectual disabilities in a
one-on-one setting.

We introduced the response prompting concept for in-
struction in preliminary work with an IRI [15] and an
AR device [16]. Here we present new prompting strategies,
additional experiments, expanded results and discussion, and
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Fig. 2. Cognitive process flowchart. Information flows from lighter to
darker shaded process steps.

observations and lessons learned over this broader study. We
hope that this work and the presented findings will help drive
further research into the creation of intelligent instruction
systems, particularly for students in elevated need, such as
those with disabilities.

II. RESPONSE PROMPTING FOR DECISION MAKING

To make intelligent decisions in the context of providing
instruction, a cognitive framework is proposed that makes
use of response prompting methodologies borrowed from
the education domain [17]. Response prompting is a well-
defined, evidence-based collection of teaching practices that
involve assessing the environment and acting or providing
assistance to stimulate a targeted behavior. By incorporating
these proven methodologies into our approach, an intelligent
system is able to use the same methods to provide instruction
that a teacher would use.

Prompt response strategies allow for multiple modalities
that can be performed by an IRI. Common prompt modalities
are vocal, visual, gestural, modeling (i.e., demonstrations),
or physical prompts. Another useful feature of prompting is
the ability to modify the intrusiveness of prompts, called
“fading”; more intrusive prompts provide more support,
whereas less intrusive prompts allow students to perform the
desired behavior independently.

Importantly, these methods go far beyond simple instruc-
tional systems: they involve a complex hierarchy of prompts,
with multiple paradigms for arranging, traversing, and fading
those prompts based on instructional needs and student
performance. Through these structured designs, they assure
student performance moves toward independence.

Leveraging the response prompting instructional strategies
in the cognitive system represents a novel approach to an
intelligent robotic and augmented reality system for in-
struction. We believe examination of this approach provides
valuable and constructive evidence for the instruction of
students by autonomous robots.

A. Cognitive Process Overview

Figure 2, inspired by [18], illustrates the cognitive frame-
work at a high level. In the cognitive process, by taking
sensory information from the world and perceiving informa-
tion salient to the task at hand, an interpretation of the states
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Fig. 3. The overall instruction process based on response prompting
methodology.

and actions of the world is created. Then, using contextual
knowledge that interpretation is reasoned upon to generate
a higher-level representation of the situation, and a decision
is made. In the intelligent instruction application, this in-
volves first using the response prompting methodology to
select the correct instruction response (e.g., present stimulus,
prompt, consequence, reinforcement) and then performing
the selected action.

The general instruction process is shown in Fig. 3. The
instructional intervention begins by giving an introduction
and general instructions for the scenario. In Task Instruction
the task is introduced and the target stimulus is presented.
Next, the prompt is selected. The intrusiveness of the prompt
depends on the methodology being employed (Sec. II-B) and
the previous prompt/response history (e.g., prior incorrect
responses). Next is the Student Response period, which ends
when the student is idle, the task is complete, or the response
interval has elapsed. The Response Evaluation determines
the outcome of the interaction: a correct answer results in
positive reinforcement; for a correct but non-optimal answer
a correction occurs before positive reinforcement; and in the
case of an incorrect answer the evaluated result information
is used as part of the process to select the appropriate
feedback. The type of response (correct, incorrect, partially
correct, or no response) combined with the known informa-
tion about the previous prompt and student’s state (active
or inactive), ultimately determines the appropriate feedback.
Only positive reinforcement is used. The reinforcement used
is differential, in that the degree of reinforcement is inversely
proportional intrusiveness of the required prompt; i.e., the
lower the level of prompt intrusiveness required, the more
positive the reinforcement.

B. Response Prompting Types

System of Least Prompts (SLP), System of Most Prompts
(SMP), and Constant Time Delay (CTD) [17] are response
prompting strategies that are popular and well-validated in
education for instruction of chained and discrete tasks, and
have been successfully used to teach students with I/DD.
Further, these methods are applicable to a wide range of
students and have been shown effective at teaching a large
variety of skills. For this work we computationally encoded
SLP, SMP, and CTD for use in an IRI’s system’s decision
making process. We also demonstrate generalizability on an
AR system.

(a) System of Least Prompts

(b) System of Most Prompts

(c) Constant Time Delay

Fig. 4. Flowcharts for System of Least Prompts (4a), System of Most
Prompts (4b), and Constant Type Delay (4c) response prompting strategies,
adapted from [17]. Note a key difference between SLP and SMP is in
the prompt sequence input: SLP is least to most intrusive (Sec. II-B.1);
SMP is most to least intrusive (Sec. II-B.2). CTD has only one prompt, the
controlling prompt, and the time interval is varied (Sec. II-B.3).

1) System of Least Prompts: In the SLP method of
instruction, a hierarchy of prompts is arranged from least
to most intrusive. At the least intrusive end, no prompt is
given. At the most intrusive end, the controlling prompt is
given. The controlling prompt is designed to guarantee that
the task is successfully performed. The prompt hierarchy
is traversed iteratively to provide more support as needed.
At each iteration, the target stimulus (e.g., the question) is
given with the prompt for the current level. The response is
evaluated after the “response interval” – a constant amount
of time before and after each prompt – elapses. A correct
response is reinforced; an incorrect response results in an
escalation of the prompt level and another iteration.



The goal of SLP is that, after sufficient repetitions, stu-
dents require fewer prompts and eventually respond correctly
before any prompt is delivered. As the student answers
correctly at lower prompt levels, a process of “self-fading”
occurs, where the student’s answers determine the rate at
which the intrusiveness is decreased.

We note here that the occupational therapy technique of
graded cueing has been previously used successfully for
imitation-games in therapy for people with autism [19] and
is similar to the SLP subtype.

2) System of Most Prompts: System of Most Prompts
(SMP) is very similar to SLP, except that in SMP the hierar-
chy of prompts is arranged from most to least intrusive. The
hierarchy of prompts is traversed iteratively in decreasing
order of intrusiveness. As with SLP, a constant response
interval is used and reinforcement is provided for correct
answers. When an incorrect response is given, the prompt
level is escalated, as with SLP.

The intuition behind the SMP approach is to guarantee
that the student first makes a successful response (via the
controlling prompt), then to fade the intrusiveness of the
prompt to work towards full independent behavior. One
observed difference between this and SLP is that with SMP,
it is highly likely that the entire prompt hierarchy is traversed
for each instruction. This could make the time expended for
each instruction longer; however, because the prompts are
arranged from most to least intrusive, errors may be less
frequent.

3) Constant Time Delay: In Constant Time Delay (CTD),
prompts are delivered after a time delay following a task
direction, which is a cue or question for the student. Unlike
SMP or SLP, there is only one prompt: the controlling
prompt. Only the time between the cue and the prompt, or
“prompt delay interval,” is varied. Initially, the delay between
the task direction and controlling prompt is zero, in what are
termed “zero-second delay trials.” The prompt delay interval
is constant for a set of instruction trials until the criterion
is met, then systematically increased. Consistently correct
response before the prompt is the goal of CTD.

C. Chained and Discrete Tasks

In addition to prompting strategies, the manner in which
the steps of the task can be taught is also a consideration.
Discrete tasks are tasks where a single correct response is
expected, such as sight words (commonly used words that
students are taught to memorize as a whole by sight). Some
discrete tasks can be subdivided into smaller sequences of
tasks as necessary for instruction.

Chained tasks are sequential in nature. Instruction on
chained tasks is conducted step-by-step in the sequence.
Examples of a chained task include most building tasks, such
as building a structure (e.g., from the ground up), assem-
bling an object or puzzle, etc. Because of their sequential
nature, chained tasks can be taught from the beginning of
the sequence, in what is known as forward chaining, or
iterating from the end of the sequence, known as backwards
chaining. Tradeoffs exist between both. This work employs

both approaches as appropriate to the task, and examines how
they impact successful learning from intelligent systems.

D. Creation of Prompting Hierarchies

The process of creating a prompt hierarchy involves creat-
ing a series of prompts and arranging them in a hierarchical
structure that is appropriate for the instruction strategy (e.g.,
SLP or SMP). The dimensions of this structure are dictated
by the student’s response space (e.g., correct, partially cor-
rect, incorrect, or no response), the discretization of task
steps, and the modalities and intrusiveness of the response
prompts.

To ensure successful instruction, the prompt content and
modalities, as well as level of intrusiveness, should be
appropriate for the student’s capabilities and diagnoses. For
these reasons, we strongly recommend collaboration with
an education domain expert for this process. For the fol-
lowing experiments, the interdisciplinary team of authors
collaborated closely to ensure a successful and productive
experience for the involved students.

III. EXPERIMENTS

A. Single-Case Experimental Design

Experiments were developed for this research using sin-
gle case experimental design (SCED), which is a common
design method in special education research. As opposed to
comparison between groups or subjects, participants serve
as their own control data for the purpose of comparing
performances between at least two experimental phases [20].
SCED methods are used in place of statistical methods
for large groups. This is not only because recruiting a
large number of participants with I/DD is infeasible, but
also because even if it were possible their capabilities and
diagnoses could be so diverse that drawing even a coarse
statistical inference would be challenging.

The objective of SCED is to determine if a causal or
functional relation exists between the delivery of the inde-
pendent variable (IV) – the intelligent instruction system –
and significant increases in the dependent variable (DV) –
the acquisition and maintenance of the skills taught.

Two types of SCED designs were used for this research:
combined multiple baseline across participants and com-
bined multiple baseline across skills. These designs allow
for evaluation of intervention effects while controlling for
threats to internal validity (i.e., that the learning is due to
the instructional intervention) in situations where alternate
designs are not feasible, such as those that would require
withdrawal of skill knowledge.

In experiments utilizing a multiple baseline across skills
design, skills are taught one at a time, and instruction
is introduced for each skill sequentially after learning the
previous skill. In experiments using multiple baseline across
participants, each student is taught one at a time, and
instruction is introduced to each successive student after
the previous student finishes learning the skill. In all cases,
baselines are taken before instruction, up to the point where



Fig. 5. The interaction setting for instruction.

the instruction begins, and probes are made after successful
demonstration of the skills to measure retention.

By introducing the intervention subsequently across a min-
imum of three replications, the possibility of any observed
change occurring due to extraneous factors (e.g., practice or
history effects) is eliminated, which allows for experimental
control and the establishment of a causal relationship [21].

B. Student Participant Population

The students1 who participated in these studies were all
college-age and attendees of a post-secondary education
(PSE) program designed for young adults with I/DD at the
University of Tennessee, Knoxville named FUTURE.2 All
students were aged 18 to 34 with IQ between 57 and 67,
received special education services throughout school, and
earned modified high school diplomas prior to participating
in the FUTURE program.

To meet the three replication minimum requirement to
evaluate the intervention effects, three students per ex-
periment were taught until criteria was reached, i.e. they
mastered the skill being taught. Seven students participated
overall, four of which participated in multiple experiments.

C. Intelligent Robot Instruction Experiments

Life skills that require object manipulation and discrimi-
nation were taught in these experiments. In our setting, the
student and the IRI stand across from each other at a table
during instruction, as seen in Fig. 5. The IRI autonomously
performs the instruction, prompting, observation, evaluation,
and feedback (correction or reinforcement) loop shown in
Fig. 3. No WoZ techniques were used for these experiments.
The complete IRI system was implemented as a suite of C++
and Python software modules, leveraging ROS3 for mes-
saging, interprocess communication, and common robotics
libraries. A custom object-tracking system shown in Fig. 6
provided the IRI with the ability to observe objects being
interacted with by both the student and the robot and to
accurately interpret the student’s performance. The object
tracking system was implemented as a set of custom ROS

1All studies for this research were performed in accordance with IRB
protocols and approval.

2More information on the FUTURE program is available here: http:
//futureut.utk.edu.

3http://ros.org

Fig. 6. The object tracker GUI, with live, adjustable parameters on top
left and the annotated live image on the bottom left. Right zoom shows
an enlarged view of the annotated image. Annotations include position,
orientation, size, centroid location, and bounding box for each object.

(a) (b)

Fig. 7. The table setup for the instructional setting from the student view
(a) and overhead (b).

nodes using OpenCV to process live image streams from a
camera mounted under a transparent tabletop, as illustrated in
Fig. 7. Details of the vision system performance are reported
in [15], where we previously introduced response prompting
for instruction with an IRI. Interaction and feedback is
provided through synthesized speech, speech recognition,
and gestures.

The robotic hardware for this research is a Meka Robotics
M3 mobile humanoid robot (Fig. 7a) with 7 degree-of-
freedom (DOF) arms, 5-DOF hands, and a sensor head with
2-DOF movement. For this research, the IRI makes use
of one PrimeSense short-range (v1.09) camera, one USB
camera, a Bluetooth microphone, and stereo speakers. The
robot is equipped with two PCs – one providing real-time
functionality of the base, arms, hands, and lift; the second
was dedicated to the vision and audio components.

Two skills were taught by the IRI: 1) making change i.e.,
given a dollar and a purchase price, first use a calculator
to determine how much change is due, then present the IRI
with the correct change in coins (originally presented in [15]
and summarized below), and 2) geometric assembly of larger
objects from smaller pieces, as shown in Fig. 8, for which
prerequisite skills were taught using the AR instruction (Sec.
III-D). Both skills involved live interaction with objects and

http://futureut.utk.edu
http://futureut.utk.edu
http://ros.org


(a) Subcomposition

(b) Symmetry

(c) Complex assembly

Fig. 8. Puzzle tasks for geometric assembly skill.

demonstration of correct responses.
The making change skill is a life and vocational skill that

involves calculating the correct quantities and denominations
of currency to be exchanged after a cash transaction. The
assembly skills taught in our geometric assembly experiment
are useful in job settings, and the geometric reasoning aspects
are useful in both work and personal life.

Instruction strategies were selected that are appropriate
to the skill being taught. For the geometric assembly skill
instruction, a SMP prompting strategy was used with back-
wards chaining, along with a multiple baseline across skills
experimental design. For the making change experiment, a
combination of SLP and discrete and forward chaining was
used. Unlike the geometric assembly and AR experiments,
the experimental design for the making change experiment
was multiple baseline across participants, to control for any
outside influences on participants’ ability to make change.

An example prompt hierarchy for part of the making
change task is shown in Table I. The SLP strategy was
employed, where prompts are arranged from least to most
intrusive: Verbal Cue 1 is the least intrusive; Prompt level
Direction 2 serves as the controlling prompt. The student re-

TABLE I
PROMPT HIERARCHY FOR THE making change TASK USING SLP.

Prompt Lvl. Resp. Prompt Description

Verbal Cue 1

NR Verbal interaction to determine how
much change is due

PC Verbal encouragement, verbally pro-
vide goal

C Differential positive reinforcement
I Same as NR

Verbal Cue 2

NR Verbal interaction to determine which
coin to begin with

PC Verbal encouragement, verbally pro-
vide goal + shortage between current
state and goal

C Differential positive reinforcement
I Verbal encouragement, provide goal +

excess between current state and goal

Direction 1

NR Gesture to correct first coin, verbally
provide goal

PC Gesture to correct next coin, verbally
provide goal + shortage

C Differential positive reinforcement
I Gesture to coin to remove, verbally

provide excess

Direction 2

NR Gesture to each coin to add, wait until
added

PC Same as NR
C Differential positive reinforcement
I Gesture to each coin to remove, wait

until removed, then same as NR

sponses shown are: NR - No Response, PC - Partially Correct
response, C - Correct response, I - Incorrect response.

In addition, to evaluate the attitudes of the student vol-
unteers towards learning from a robot, Likert-type scale
statements and open-ended questions were used to collect
subjective data before and after interaction with the IRI for
the making change experiment. Results of this survey are
discussed in Sec. IV-C.

D. Intelligent Augmented Reality Instruction Experiments

We also implemented the response prompting for intelli-
gent instruction concept on a portable augmented reality de-
vice. AR devices share similar features to an IRI instruction,
such as context-awareness, precision, and tirelessness of an
intelligent system situated in the environment with the user.
Both are capable of delivering visual and auditory prompts to
the student that interact with the real environment. Using an
AR device for instruction, we demonstrate that our approach
generalizes to systems with these overlapping features but a
different physical implementation (i.e., a head-mounted AR
device vs. a humanoid robot).

Figure 9 shows an overview of the AR system. From
the student’s perspective, when wearing an AR device and
learning a new sequential task he or she can ask for help with
the next step in the sequence at any time. The AR device
captures an image from the student’s point of view, processes
it, and presents an appropriate instructional prompt to the
student via the AR device. In this experiment, the prompt
modalities are an augmented version of the uploaded image
as well as audio. Live video augmentation is outside the
performance abilities of our hardware implementation, but



Fig. 9. AR system overview. Student is instructed to face the device and ask
for assistance. A picture taken from the wearable’s camera is classified and
an augmented image and audio containing the proper instructional prompt
for the next step is delivered.

could be included in future work.
To provide this instruction, the system parses the image

for relevant information before applying supervised learning
to solve the problem of identifying the correct context of the
image. Classifier output combined with the task’s knowledge
model allows the selection of the correct prompt for the next
step in the task, which is delivered seamlessly through the
AR interface to the student.

Our AR system implementation consisted of a Google
Glass wearable AR device running a simple Android ap-
plication with a streamlined interface. The simple audio
command, “Okay Glass, what’s next?” triggers the app.
The user clicks to take a picture, which is uploaded to the
cloud server, and an image and audio instructional prompt is
provided via the Glass display and built-in speaker within 5-
10 seconds. On the cloud side, intelligent instruction is made
possible using OpenCV for image processing and Support
Vector Machines (SVMs) trained on extracted visual features
for image classification. In the event of a failed or low-
probability classification, the user is presented with a prompt
to try again.

Three skills were taught using the AR device: 1) using a
copy machine, 2) accessing one’s student account statement
online, 3) performing geometric reasoning tasks with puzzle
blocks to acquire necessary prerequisite skills for advanced
skills taught by the IRI system. Fig. 10 shows example an-
notated image prompts from these experiments. A summary
of these experiments appeared in [16].

The copy machine skill is an office vocational work skill
where students were asked to make a specific number of
double-sided copies of a document on a commercial copy
machine with a complex, less-than-intuitive user interface.
The student account statement skill is an employment and
independent living skill where the student was asked to
login and retrieve a copy of their prepaid student account

(a)

(b)

(c)

Fig. 10. Example annotated image prompts from the AR instruction
experiments: 10a shows a step from the copy machine study; 10b shows
a step from the student account statement study; and 10c shows a step in
the geometric reasoning study, where a student is learning the rotate and
half turn subskills. Image prompts are shown to the user via the AR device
and accompanied by audio prompts.

statement. The third experiment, geometric reasoning, taught
object manipulation, placement, orientation, and assembly
sub-skills that are highly vocationally relevant.

For these experiments, instructional strategies were care-
fully designed using the appropriate combination of prompts,
prompting strategy, and prompt chaining, for each skill
taught and the AR technology method (Table II). These
combinations of methods were selected with expert consul-
tation to match the appropriate prompt strategy and chain-
ing direction to the structure of the skill. All three AR
experiments used a multiple baseline across skills design,
where each sub-skill or step was mastered before the suc-
cessive one was introduced. Also in all three, the skills
were taught in forward-chained order since the tasks (e.g.,
navigating through a copier interface) can only progress
in a forward direction. The geometric reasoning skill also



TABLE II
EXPERIMENT OVERVIEW.

Platform Experiment Prompt Design Relation

ARI
Copy
machine

Self-directed Multiple
baseline
across
skills

Forward
chaining

Student
account

Self-directed Multiple
baseline
across
skills

Forward
chaining

Geometric
reasoning

CTD Multiple
baseline
across
skills

Discrete
and
forward
chaining

IRI Making
change

SLP Multiple
baseline
across par-
ticipants

Discrete
and
forward
chaining

Geometric
assembly

SMP Multiple
baseline
across
skills

Backwards
chaining

employed discrete sub-skills at some steps in the chain.
For prompting strategy, geometric reasoning employed the
Constant Time Delay (CTD). The other two AR experiments
used a simplified “self-directed” method that only provided
controlling prompts when the students requested assistance
from the AR device. This was similar to CTD but with the
student controlling the time delay.

IV. RESULTS AND DISCUSSION

Results from each experiment showed that in all cases
and for all subjects, using intelligent robot and augmented
reality instruction, the students were able to learn the skills
to mastery.

Results from the IRI-instructed making change skill are
shown in Fig. 11. These results show that Student 3 had a
steeper learning curve due to a more limited understanding
of the prerequisite coin value identification and direction-
following abilities than Students 1 and 2. Despite this, using
the SLP methodology combined with forwards chaining, the
IRI was able to provide increasingly supportive prompts to
help all students to mastery, as discussed in Sec. IV-A.

Results from the IRI-instructed geometric assembly skill
and the ARI-instructed skills are shown in Fig. 12. Perfor-
mance in the geometric assembly (left column) shows strong
success that can be largely attributed to the structure of task
instruction using SMP with backwards chaining, as discussed
in Sec. IV-B.

The results from the ARI experiments (right column)
verify the generalizability of the proposed approach to other
interaction domains. Indeed, as discussed in Sec. IV-D,
students were able to make rapid gains with ARI instruction,
which we attributed to the self-directed prompt control
combined with the immediacy of intelligent, context-aware
instruction in augmented reality. The results presented here
are a significant expansion of preliminary work [15], [16]
that introduced the IRI concept.

Fig. 11. Results from the IRI-instructed making change experiment using
multiple baseline across participants. Data is collected in two phases, shown
separated by dashed lines: 1) baseline, measuring each participant’s perfor-
mance prior to instruction and 2) intervention, where students performed the
task with instruction as needed. The skill was divided into two sub-skills:
1) identifying the correct amount of change and 2) providing the correct
combination of coins. Scoring methodology is detailed in [15].

TABLE III
EXPERIMENT RESULTS - TOTAL ERRORS.

Total Errors
Experiment Student 1 Student 2 Student 3

Copy machine 0 0 3
Student account 3 0 1
Geometric reasoning 4 1 2
Making
change

Calculator 9 9 6
Coin response 9 6 14

Geometric
assembly

Subcomposition 0 0 2
Symmetry 0 3 4
Complex
assembly

2 4 11

To enable a comparison across the diverse skills and
experimental configurations, Table III summarizes the total
number of errors the students made before mastering the
corresponding skill, or sub-skills in the making change and
geometric assembly experiments (Fig. 8). The values in Table
III represent the total number of errors each student made in
across all trials for each skill.

While it is not possible to determine a superior strategy
that generalizes to all cases, we can observe that error rates
are influenced by the complexity of the skill. Lower error
rates occurred with simpler skills, such as copy machine,
and higher rates occurred with the highly complex making
change skill, which was divided into sub-skills for correct
use of a calculator and correct response with coins.

In addition, while the outcomes were very positive for
those students involved, careful decisions were made to



Fig. 12. Left column: IRI geometric assembly skill results, where three skills were taught, with three puzzles per skill (see Fig. 8). Non-increasing
performance generally represents errors, because when using the SMP + backwards chaining method, the number of possible correct independent steps
increases until the student is asked to assemble the entire figure independently. Right column: ARI copy machine, student account, and geometric reasoning
skill results. Students are given an Instruction phase after Baseline, where they must perform the skill perfectly, followed by an Independent phase, where
the students control their own prompts.

combine the best response prompting strategies, experimental
design, and prompt relationship with each skill being taught
to achieve the best performance, as summarized in Table
II. Therefore, beyond validating our approach, we believe
that an additional valuable contribution of these experiments
can be found in key findings discussed in the following
subsections that we hope can constructively inform future
work in designing intelligent robotic and AR instruction
technologies.

A. SLP + Forwards Chaining

The first key finding is that SLP with forward chaining
allows students to present an open-ended response, which
can be challenging to accommodate in the IRI’s perception
system. In the making change experiment, this manifested
as allowing the student to present any combination of coins
(however incorrect, in some cases), for which the robot

had to have a clear prompt. We found that despite this
challenge, the strength of the methodology allows for the
robot to provide increasingly intrusive prompts that can be
designed to progressively limit the response space. Then, by
concluding in the controlling prompt that only allows for the
correct response, success is guaranteed.

B. SMP + Backwards Chaining

Importantly, we found that backwards chaining, combined
with SMP, is highly appropriate for instruction from a robot.
This is because the state space of responses is restricted
by design (i.e. it avoids the open-ended response challenge
of the SLP + Forwards Chaining method described above),
and because of a robot’s advantages in performing repeti-
tive tasks. Backwards chaining and most-to-least intrusive
prompting means that the skill is taught backwards from a
nearly complete example to total independence. The prompts



delivered at each step begin with the controlling prompt and
decrease in intrusiveness from there. For example, in the
geometric assembly experiment, students were first presented
with a puzzle with one piece missing, and told explicitly
where to put which piece. Then, the prompt was decreased
for that step down to an independent prompt (e.g., “try it
yourself”). This was repeated with one less piece in the
puzzle until the student was finally asked to assemble the
puzzle themselves from scratch. It is worthwhile to note
that in the results shown in the last row of Table III, all
of the errors that occurred in complex assembly sub-skill
involved assembling the “ball” hexagon-shaped object (Fig.
8c), which has many possible hexagon-shaped but incorrect
sub-compositions; students had no difficulty assembling the
other figures in this sub-skill. In light of these observations,
we believe the SMP + backwards chaining approach, while
very time-consuming and perhaps tedious and more mistake-
prone for a human instructor, is a perfect match for the
tirelessness and precision of an IRI. Additionally, this high
degree of repetition can be greatly beneficial for students
with I/DD.

C. Subjective Acceptability

To determine the students’ opinions on being instructed by
a robot, an acceptability study using a Likert-type scale was
conducted before and after the students’ successful instruc-
tion with the IRI as part of the making change experiment.

A five-point Likert-type scale was used for each statement,
and optional open-ended follow-up questions appropriate to
each statement (e.g., “Why or why not?”, “Please explain”)
were asked. To ensure a uniform understanding of the ques-
tions, surveys were performed orally by experts, with visual
aids provided for response anchor points, with responses
from “strongly disagree” scored at -2 to “strongly agree”
scored at +2. The pre-assessment survey consists of 18
statements divided into 8 categories. The post-assessment
survey consists of 30 statements in 14 categories. There are
2-3 statements each category, and a summative analysis was
applied.

This study found mixed enthusiasm prior to instruction by
an IRI, and positive opinions of the overall experience and
performance of the IRI following instruction.

In Table IV, we see categories from the pre- and post-
instruction Likert-type survey results. The initial results
of the assessment of students’ opinions prior to working
with a robot instructor showed mixed enthusiasm for the
experience; however, post-instruction results show a positive
opinion of the overall experience and performance of the
robot. Compared to the students’ lower levels of willingness
to work with a robot pre-instruction, the students showed
greater willingness to work with the IRI again. They also
trusted the robot, were willing to obey the robot’s instruc-
tions, and found the experience positive overall. Perhaps
unsurprisingly, Student 3, who had the most difficulty, also
gave the experience the lowest scores for how easy it was
to learn, and how much she trusted the robot. Regarding
the mixed ratings of the usefulness of the robot’s gestures,

TABLE IV
ACCEPTANCE SURVEY SUMMATIVE RESULTS. QUESTIONS BOLDED FOR

DISCUSSION.

Category (Pre-Instruction) S1 S2 S3
Do you like computers in general? 2 1 0
Do you like robots? 1 2 0
Have you been exposed to robots before? -0.33 0.67 -1
Are robots useful? 1.5 1.5 0.5
Would you learn from a robot? -0.5 1 1
How comfortable are you with the skill? 2 1.5 0
How well do you think you perform the skill? 2 0.5 0.5
Category (Post-Instruction) S1 S2 S3
Was the robot good or bad overall? 1.5 1.5 1.5
Do you view the robot as an embodied intel-
ligence?

0.75 1.25 0.75

Did the robot seem to understand your ac-
tions?

0 1 1

Was the robot knowledgeable? 1.5 1 2
Did you trust the robot’s instructions? 1.5 1.5 0.5
Did you follow the robot’s instructions? 2 1 1.5
Was the robot easy to learn from? 2 1 -0.5
Was the robot’s speech clear? 2 1 0.5
Were the gestures the robot made useful? -0.33 1.6 -0.67
How comfortable are you with the skill? 0 1 1
How well do you perform the skill? 0 1 1.5
Do you feel like the robot did a good job? 1.5 1 1.5
Would you work with the robot again? 2 1.5 2

one possible explanation for the lower ratings of Students 1
and 3 is that despite giving very positive feedback overall,
Student 1’s higher affinity meant she had little need for the
IRI’s gestures, whereas Student 3 felt more frustrated by the
longer time to acquire the skill, as reflected in her score on
the ease of learning question and as discussed above.

In open-ended responses, students highlighted their per-
ceived benefits for working with IRIs, including improved
pace, patient repetition, and relieving the burden on human
teachers.

D. Efficiency of Self-directed AR Instruction

It is likely that the self-directed nature of the AR instruc-
tion system is responsible for the rapid learning in the AR
experiments. We found that providing the participants with
the ability to control their own prompts, combined with the
intelligent AR environment, likely contributed to increased
engagement and efficiency in learning the tasks. In this way,
because students were able to take control of their own
learning experience, they were able to learn more efficiently.
A genuine level of satisfaction with the experience on the part
of the students was observed, which could also be attributed
to the efficiency of the experience.

E. Challenge Areas

Based upon open-ended responses, student performance,
and experimenter observations, several areas that are chal-
lenging for designing an intelligent instruction system were
also identified. We believe the following lessons-learned
observations would be informative toward future work in this
area:

• Prompt design is a critical determining factor in success-
ful instruction. Intrusiveness, verbiage, and interaction
modalities should be designed with a domain expert.



• Incorporating multiple levels of interaction detail in-
creases efficiency and trust. Different modes of interac-
tion, e.g., controlling verbosity in repetitive interactions,
can decrease cognitive load and negate the appearance
of lack of intelligence, thereby increasing trust.

• Accurate perception is critical. Vision and speech recog-
nition errors that result in incorrect feedback from the
instructor could be harmful to the student’s education
and must be minimized. Because of variability in speech
recognition performance, for example, we chose to
minimize the students’ verbal interaction with the robot
and primarily interact via objects. Robust multimodal
perception of student behavior is an open challenge.

• Securing the attention of the student and detecting idle
states are essential for intelligent interaction. Determin-
ing when a student is or is not paying attention and
when they are idle, either because they are uncertain
of the correct response or they have completed their
response, is a trivial task for a human teacher. However,
this necessary step can be difficult for an intelligent
robot instructor; failure in this can result in loss of trust
in the IRI’s abilities (reported in open-ended survey
response by one student whom our IRI initially had
difficulty engaging) as well as missing an instruction.

F. Limitations of This Work

The primary limitations of this work can be grouped into
issues surrounding the study population (size, variability, and
experience) and the design decisions necessary (prompts,
interaction modalities, verbiage) to create an IRI.

Regarding the population, the population size for this work
is not statistical. As noted in Sec. III, this study uses single-
subject experimental design methods instead of statistical
methods for large groups because of the small, diverse
population involved. In this methodology, three replications
are sufficient to establish a causal relationship. Although a
large population size study is infeasible, additional replica-
tions would help strengthen and understand this relationship.
Further, the variability of the population of persons with
I/DD is large. Because of this, future studies should be
performed with the understanding that this variability could
impact the rate of successful learning. The PSE program
(Sec. III-B) this study’s participants drew upon are exposed
to technology as part of the program; this exposure could
have influenced their performance.

Regarding the design decisions, as noted in Sec. IV-E, an
IRI is a complex system. The researchers in this work learned
early on that even small changes, e.g., in verbiage, can have
significant impacts on interaction. This is particularly true
for this population. This work sought to achieve a good-
performing design through collaboration with experts in the
education field. In addition to performing such collaborative
work, future studies should seek to define and categorize the
types of design decisions that could affect study outcomes.

V. CONCLUSION

In this article, we described the use of response prompting
for cognitive decision-making in intelligent instruction, with
applications in robotics and augmented reality. We gave
an overview of our interdisciplinary collaborative efforts
to apply this approach to the instruction of students with
I/DD, to assist with the long-term goal of empowering this
population.

We shared the results of studies teaching academic and
vocational lessons in life skills, including office vocational,
geometric reasoning, and monetary mathematical skills. Our
results showed great success using response prompting as
part of an overall cognitive framework for intelligent in-
struction. While these results are a preliminary attempt
to begin addressing some of the issues facing those with
I/DD, we believe they show that this novel approach has
merit in many applications. Most importantly, we believe
the findings herein should be constructive towards future
investigations and the development of intelligent instructive
technologies, especially those that provide critical assistance
to this important population.
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