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Abstract— Resource-constrained surveillance tasks represent
a promising domain for autonomous robotic systems in a variety
of real-world applications. In particular, we consider tasks
where the system must maximize the probability of detecting
a target while traversing an environment subject to resource
constraints that make full coverage infeasible. In order to
perform well, accurate knowledge of the underlying distribution
of the surveillance targets is essential for practical use, but
this is typically not available to robots. To successfully address
surveillance route planning in human-robot teams, the design
and optimization of human-robot interaction is critical. Further,
in human-robot teaming, the human often possesses essential
knowledge of the mission, environment, or other agents. In
this paper, we introduce a new approach named Human-
robot Autonomous Route Planning (HARP) that explores the
space of surveillance solutions to maximize task-performance
using information provided through interactions with humans.
Experimental results have shown that with minimal interaction,
we can successfully leverage human knowledge to create more
successful surveillance routes under resource constraints.

I. INTRODUCTION

Autonomous search and surveillance by robotic systems is
an area of active research with strong potential advantages in
applications such as security, defense, or search and rescue.
Successful realization of this research will result in systems
capable of continuously monitoring a complex environment
over long durations and precisely localizing themselves and
their targets of observation, that are low-cost and expendable
in dangerous situations. Because the successful deployment
of these systems alongside humans depends largely upon the
interaction between robot and human teammates, the design
and optimization of human-robot interaction in a mixed team
is critical. In such a teaming scenario, the human teammate
often, if not always, has essential information (e.g., about the
mission, prior knowledge of the environment, or the presence
of other agents) that will affect the performance of the task,
which a robot team member may not often possess. In fielded
teams (e.g., for search and rescue, disaster monitoring, and
other time and resource-limited situations), the capability to
convey this information from the human to the robot in an
expedient and efficient manner is thus highly valuable.

An important problem in robot-assisted search and surveil-
lance is to autonomously plan surveillance route solutions
where the robot must maximize its probability of detecting
a target while traversing an environment. Solving this prob-
lem is particularly challenging in the context of planning
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Fig. 1: The problem of resource-constrained surveillance is
to find a set of viewpoints vj that maximize the expected
target-detection rate based on sensor footprints F (vj) such
that a path can be driven to visit all viewpoints by a mobile
robot within a cost budget B. The contribution focuses on the
novel formulation and approach of solving this problem in a
human-robot teaming scenario, in which a human interacts
with the robotic system by adjusting its prior belief on target
locations (e.g., the cloud) to achieve information-gathering
tours that are high-performing.

surveillance routes that maximize target detection subject
to limited resource constraints, e.g., time, energy, or ef-
fort, that are imposed by real-world applications. Recently,
several methods were proposed to address parts of this
problem. Information-theoretic methods were used to provide
a mathematical basis for autonomously optimizing target-
detection trajectories [1]. It is clear that resource-constrained
surveillance task belong to the class of problems referred
to as the selective traveling salesperson problem or orien-
teering problem [2]. Information gathering tasks break the
assumption that reward for visiting each site is independent.



This motivates the correlated orienteering problem, along
with candidate solution algorithms [3], [4]. However, these
methods assume a fully-specified problem definition. We
believe that with minimal interactions, we can leverage a
human teammate’s knowledge to dramatically improve the
performance of autonomous route planning when addressing
real-world tasks with uncertain or partial problem specifica-
tions.

We propose a novel approach, named HARP (stand-
ing for Human-robot Autonomous Route Planning), to au-
tonomously generate and optimize surveillance route solu-
tions from minimal human-robot interactions under resource
constraints, which addresses the correlated orienteering prob-
lem in a human-robot teaming scenario. Specifically, we
present an interactive human-robot planning approach based
on an information-theoretic function to automatically update
viewpoint rewards from human input and optimize the target
detection probability within the desired cost budget. A human
teammate, with knowledge of the likely target locations,
interacts with the robot by providing updates to a prior belief
on the target locations. Through iterative examination of the
surveillance tour in response to these updates to the target
belief prior, the human teammate can guide the system to
generate plans that are increasingly higher-performing. In
an effort to minimize operator load while maximizing the
speed to a solution, we propose methods for minimizing the
number of human interactions. By autonomously generating
route solutions with minimal human input, we can attain
performance approaching a solution generated with complete
situational knowledge.

The contribution of this paper is threefold:
• We propose a new problem of human-robot autonomous

planning to construct resource-constrained surveillance
route solutions in human-robot teaming scenarios, pro-
viding a novel formulation based upon constrained op-
timization that considers detection probability, resource
constraints, and human-robot interaction.

• We introduce a new HARP method to solve the formu-
lated constrained surveillance problem.

• We simulate extensive human-interactions to investigate
the relationship between the number of interactions
and quantitative route quality. We also conduct ex-
periments with a physical robot in a realistic envi-
ronment to demonstrate the effectiveness of HARP in
autonomously generating resource-constrained surveil-
lance routes.

The remainder of this paper is organized as follows.
Section II provides a review of the related research. Our
problem is formally defined in Section III. We detail our
approach in Section IV. Experimental results are presented
in Section V, before finally concluding with Section VI.

II. RELATED WORK

In this section, we provide a review of the recent work on
orienteering problems as well as the human interaction with
autonomous planning systems.

A. Planning For Robotic Information Gathering

Information-theoretic methods for robotic map-exploration
have received considerable attention as they provide math-
ematically well-founded information-gain functions that can
be used for active control and planning [5], [6], [7]. Indeed,
information theoretic-based control has also recently been
applied to target-detection and tracking problems [8], [1].

The class of resource-constrained continuous surveillance
tasks we are interested in have long been considered by the
Operations Research (OR) community and referred to as the
orienteering problem (OP) or selective traveling salesperson
problem [2]. In these problems, the task is to find a subset
of locations such that the tour, i.e., solution to the traveling
salesperson problem, maximizes reward for visiting each
location while keeping the total solution cost under some
budget. Being an NP-hard problem, most algorithms ad-
dressing the OP rely on approximations; the development of
practical solution algorithms continues to be an active area of
research [9], [10]. Recent work, however, has leveraged mod-
ern solutions to the OP to support solutions of information-
gathering routes for hybrid aerial-ground systems [11].

When employing state-of-the-art information-gain metrics
as the reward in an OP context, it becomes clear that in
most practical scenarios, the rewards for visiting sites are not
independent. This has led recent work to further define the
correlated orienteering problem as an extension where the
reward for visiting each location is correlated with the set of
other locations visited, making the problem more amenable
to planning informative tours in the context of persistent
monitoring [3]. Efficient approximate algorithms have been
shown to solve the correlated orienteering problem at speeds
that make it reasonable to use in an online robotic setting [4].

While there do exist promising solutions to address ori-
enteering problems for realistic applications, these methods
assume a fully specified and correct problem definition.

B. Human Interaction with Autonomous Planner

While several recent studies address human interaction
with autonomous planning systems [12], [13], [14], two
contrasting categories of methods are particularly related
to the informative tour planning problem in the context
of constrained orienteering we are considering. The first
category of approaches represents human interaction as a
collection of constraints within which the robot must plan
for an optimally informative path [15]. The other category
of approaches allows the human to shape the information
function that is applied for decision making [16]. In this
work, we adopt the strategy of shaping the information
function rather than applying human-derived constraints due
to the fact that correlated orienteering problems are already
heavily constrained and additional constraints could easily
lead to infeasibility, which has been studied experimentally in
our early work [17]. Different from previous work, this paper
introduces a new problem formulation of the human-in-the-
loop constrained surveillance planning problem in human-
robot teaming scenarios, and proposes an optimization-based



solution that can jointly model detection probability, resource
constrains, and human-robot interaction.

In addition, we notice that there is a potential connection
between our work at that of reward shaping in the rein-
forcement learning community, in particular the interactive
approach described in [18], [19], which however reshapes
the reward function instead of the information distribution.
While reward shaping can be applied to more quickly guide
the system towards the discovery of solutions that maximize
an underlying reward function, the methods based on reward
shaping cannot be directly applied in our problem domain
where the underlying reward function may not be entirely
known to the system.

III. PROBLEM FORMULATION

Given a mobile robot that is equipped with a visibility-
based sensor (e.g., a camera or laser range-finder) and a map
of an environment, the problem to plan resource-constrained
surveillance routes is defined as the construction of a cyclical
tour of the environment so that the robot will optimally detect
targets that appear in the environment. We assume that the
robot has access to an uninformed prior on the probability of
a target appearing at any point in a 2D environment, i.e., the
target belief prior. A human team member has access to a
higher-fidelity belief distribution based on their experiences
and cues (e.g., visual or auditory) in the environment, but it
is intractable to fully specify this distribution for the robot.

Mathematically, we represent the target belief prior as an
occupancy grid g consisting of a set of G independent cells
{g1, . . . , gG} such that the probability of there being a target
in cell i is p(gi = 1), and denote a viewpoint as vj ∈ SE(2)
with vj =

[
x, y, θ

]
, which is obtained by the robot to make

an observation. The visibility-based sensor on the robot has a
sensor footprint that can be found by raycasting on the map
of the environment and is given by a set of cells gi ∈ F (vj)
as depicted in Fig. 1. Let qji be the measurement made of
cell gi from viewpoint vj , then the target detection model [1]
can be denoted as:

p(qji = 1|gi = 1) = γ p(qji = 0|gi = 1) = 1− γ
p(qji = 1|gi = 0) = 0 p(qji = 0|gi = 0) = 1.

(1)

Note that this model assumes no false-positive measurements
and a true-positive rate of γ.

We can compute the “reward” for visiting a single view-
point R(vj) as the expected number of target detections,

R(vj) =
∑

gi∈F (vj)

p(gi) · p(qji |gi). (2)

While the probability of a target in each cell is independent,
the probability for a set of measurements given the occu-
pancy grid (e.g., p(q|g)) is not. However, for a binary sensor
with high true-positive rate γ, we can closely approximate
by only considering the first observation of each cell gi. This
means that for a set of observations v = {vj}, we can write
the reward R(v) as

R(v) =
∑

gi∈Gv

p(gi) · p(qji |gi) (3)

where Gv = {F (v1) ∪ F (v2) · · · ∪ F (vj)}.
Then, the resource-constrained surveillance route planning

can be defined as an optimization problem to find a sequence
of viewpoints v =

[
v1, . . . , vN

]
, where the cost of traversal

between two viewpoints be C(vi, vi+1) > 0 so that the total
cost for a route is C(v) =

∑
i∈1,...,N,1 C(vi, vi+1). Given a

set of possible viewpoints V , we can solve this problem1 by

argmax
v⊂V

R(v)

subject to C(v) ≤ B
v =

[
vs, . . .

]
.

(4)

The choice of the cost budget B controls the frequency of
observations in our continuous surveillance setting. We also
constrain the problem by pre-defining the starting viewpoint
vs to be the current pose of the robot.

IV. THE HARP APPROACH

Our approach, Human-robot Autonomous Route Planning,
or HARP, begins with the observation that the belief prior
for the target, g, is fundamental to solving Eq. (4); however,
we wish to address situations where this information is not
completely available to a robotic system. While one approach
could be to leverage machine learning to predict g, the
amount of training data required would be cumbersome,
and generalizability of any learned model remains an open
question. Instead, we choose to treat this circumstance as one
where a human teammate possesses knowledge sufficient to
provide g, but a mechanism for fully defining the target belief
prior would be intractable.

Therefore, we propose to examine the problem as for-
mulated in Eq. (4) using iterative interactions between the
human and the robot, where in interaction round k, the
human teammate updates the series of target belief priors gk

using knowledge of the target distribution and the previous
solution vk−1 to the correlated orienteering problem. We
introduce a modification of Eq. (4) that simultaneously
maximizes the reward and minimizes the cost in the objective
function to reduce the amount of budget used to achieve the
reward. Then, the problem in Eq. (4) can be rewritten as:

argmax
v⊂V

R(v)− λC(v)

subject to C(v) ≤ B
v =

[
vs, . . .

]
.

(5)

where λ is a trade-off parameter controling the cost effect.
The formulation in Eq. (5) is particularly useful in

iterative, online applications. Without this formulation, when
solution vk is generated using vk−1 as input to Algorithm 1,
the budget B would likely be expended, and generation of
vk would be overly dependent upon delete events (line 10),
the frequency of which is the size of the current solution
|v∗| relative to the entire viewpoint space |V |. Instead, by
introducing the trade-off parameter λ, we allow our the initial

1From Eq. (3), it is clear that the sum of independent rewards R(vj) is
an upper bound for the actual reward R(v), i.e.,

∑
vj∈v R(vj) ≥ R(v),

thus Eq. (4) can be considered as a correlated orienteering problem [3].



Fig. 2: HARP overview. Progress flows downward, beginning
with human input and generated solutions will be presented
back to the human teammate.

solution v0 to have unexpended budget so that we can find
solutions sufficiently below budget B to allow for variability
in execution.

The overall information flow in the HARP solution to
the resource-constrained surveillance problem is depicted in
Fig. 2. First, given an uninformed (e.g., uniform) target belief
prior g0, a set of candidate viewpoints is selected, and a
solution to the correlated orienteering problem Eq. (4) is
constructed. This initial solution v0 is presented graphically
as an under-budget surveillance tour of the environment.
Then, the human is able to modify the target belief prior
with a single interaction to create g1. This new g1 represents
a better-informed prior, and a solution to the correlated
orienteering problem is generated using this new information
and v0. The human teammate can then view and provide suc-
cessive interactions to shape the surveillance route generated.

As graphically illustrated in Fig. 2, the set of candidate
viewpoints V = {vj =

[
x, y, θ

]
} are generated by sampling

over unoccupied space within the environment. Then, using
the Target Predictor module, each candidate viewpoint’s
reward R(vj) is scored individually based upon the target
belief as defined in Eq. (2). Because the actual detection
rates of novel targets are dependent on observations from
other viewpoints, these scores serve as an upper bound on
the reward for visiting each viewpoint vj .

While the correlated information-gain based reward func-
tion is sub-modular and therefore efficient optimization solu-
tions can be devised, with the addition of a traveling budget
constraint, this problem becomes non-submodular [4]. To
address this issue, after the Prepare Input step is complete,
we split the correlated orienteering problem into a combi-
nation of Constraint Satisfaction and Traveling Salesperson
problems. Then, we implement a new approach by adapting
and modifying the Random Orienteering (RO) algorithm [4],
as shown in Algorithm 1.

In the new Algorithm 1, we address Eq. (5) by iteratively

Algorithm 1: Modified RO based on [4] for solving
decoupled constraint satisfaction and TSPs

Input : G = [V,E], vs, vk−1, B,m
Output: The best route found in 3|V | steps

1 if vk−1 == Null // First iteration
2 then
3 v, C(v) = SampleRandomSolutions(V, vs,m)
4 v∗ = v // Init weighted random solution
5 else
6 v∗ = vk−1 // Init previous solution
7 end
8 for i = 1 : 3|V | do
9 vnew = Sample(V ) // Sample a view

10 if IsInRoute(v, vnew) then
11 v = DeleteFromRoute(v, vnew)
12 else
13 v = AddToRoute(v, vnew)
14 end
15 v, C(v) = TSP (v) // TSP returns ordered v

and cost
16 if C(v) <= B ∧R(v) > R(v∗) then
17 v∗ = v
18 end
19 end
20 v∗ = GreedyLocalSearch(V,v∗, B)
21 return v∗

Algorithm 2: Sample weighted random solutions
Input : V, vs,m
Output: A selection of vertices weighted by reward

1 v∗ = {}
2 for i = 1 : m do
3 v = vs ∪WeightedRandomSample(V ) // select

viewpoints
4 v, C(v) = TSP (v)
5 if C(v) <= B ∧R(v) > R(v∗) then
6 v∗ = v
7 end
8 end
9 return v∗

exploring subsets of candidate viewpoints v ⊂ V , i.e., the
Constraint Satisfaction Problem, and then checking for a tour
within the cost budget B, which is the Traveling Salesperson
Problem (TSP), using a small cost-effect value for λ. We
note that the construction of the edge weights for a TSP
in a realistic robotics application can be computationally
expensive in its own right and involves motion planning
with respect to complicated environments and differential
constraints. Thus, we address this problem in three ways:
(1) evaluating edge costs for only the subset of viewpoints
being considered, (2) caching path queries, and (3) leveraging
algorithms shown successful in the “multi-query” setting,
e.g., the probabilistic roadmap method [20]. In this way,
we spend some precomputation effort to speed up later
calculations of the cost to traverse from one viewpoint to
another, C(vi, vj). We assume the costs between viewpoints
to be symmetric such that C(vi, vj) = C(vj , vi).

One challenge of implementing and applying Algorithm



Algorithm 3: Modified greedy local search
Input : V,v∗, B
Output: v∗ with greedily-selected neighbors

1 veligible = {}
2 for i = 0 : |V |, j = 0 : |v∗| do
3 if Distance(vi, vj) < δ ∧ vi 6∈ v∗ then
4 veligible = veligible ∪ vi
5 end
6 end
7 for e = 0 : |veligible| do
8 if R(v∗ ∪ ve) > R(v∗) + c ∧ C(v∗ ∪ ve) < B then
9 v∗ = v∗ ∪ ve

10 end
11 end
12 return v∗

1 is that the rate of convergence to a solution is influenced
by the initial chosen set of viewpoints. We overcome this
by introducing an initialization method, shown in Algorithm
2, which performs sampling of m candidate viewpoints,
weighted by reward, to initially explore several disparate
solutions with high reward upper bounds and continuing with
the one that is under budget and maximizes reward. We score
the actual reward R(v) for a candidate viewpoint selection
based upon Eq. (3), which accounts for coverage overlapping
between viewpoints and provides an accurate representation
of the target detection rate.

Algorithm 1 continues by randomly sampling candidate
viewpoints vj ∈ V (line 9), updating the active solution
v (lines 10-15), and evaluating with respect to the current-
best solution tour v∗ (line 16). If the viewpoint selected is
currently in the tour v, it is removed (line 11); if it is not in
the tour, then it is added (line 13). If the cost of v is under
budget and it improves the reward over v∗, it is kept as the
current best tour (line 17).

After 3|V | iterations (per the standard probabilistic con-
straint satisfaction problem algorithm from [21] modified in
[4]), a modified version of the Greedy Local Search from [4]
is performed (Algorithm 3, where δ is a distance threshold
and c is a reward threshold) to improve anytime performance
by incorporating nodes in the neighborhood of the chosen
route that increase the reward over a threshold value, c,
while remaining under cost. First, a list of eligible candidates
within a distance threshold δ of existing tour viewpoints
is constructed (lines 1-6). Then, if the addition of any of
those candidates increases the tour reward R(v∗) while being
under budget B (lines 7-11), the viewpoint is added to the
tour. Finally, after the greedy local search is complete, the
v∗ tour is returned.

V. EXPERIMENTAL RESULTS

We evaluate the performance of the HARP solution with
two sets of experiments in both simulated and real-world en-
vironments to address the resource-constrained autonomous
surveillance route problem. We compare the performance of
HARP with varying numbers of human interactions against
a baseline method in 210 simulated surveillance trials, and

(a) (b)

Fig. 3: Illustration of the effect of the human-specified target
distribution information. (a) shows a route generated from a
uniform target distribution probability, indicated by the blue
background shading. (b) shows a route generated with a sin-
gle human input (depicted by the red circle in the lower right
room) to alter the target probability distribution. The purple
circle indicates tour start/end. Red arrows represent oriented
viewpoints and red lines represent the path computed for the
tour. The gray overlay indicates the sensor fields of view.

demonstrate the HARP solution in 36 surveillance trials in
a real-world environment with a physical robot.

A. HARP Implementation

Our HARP system is implemented as a suite of C++ and
Python software modules, leveraging ROS [22] for messag-
ing, interprocess communication, and common robotics li-
braries. In addition, we implement a multi-query path planner
based on the Open Motion Planning Library (OMPL) [23]
for computing edge costs necessary for TSP problem formu-
lation, and we adopt the Concorde library [24] to implement
solutions to TSP instances.

To visualize the environment, as well as the current target
belief prior gk, current tour solution, and regions observable
by the robot, we leverage the ROS RViz tool. The user is
able to edit the target belief prior g using custom plugins
we have developed for RViz by “painting” regions of higher
target probability with the mouse pointer. After each such
interaction, the HARP system regenerates a new surveillance
tour solution vk using the new prior gk. In the experiments,
the budget B and the small cost-effect parameter λ are
tuned by hand for each environment to produce a resource-
constrained scenario where a tour providing full observation
coverage of the environment is not possible. This is necessary
to examine the resource-constrained surveillance problem; in
practice, this resource constraint would come from a higher-
level mission specification, such as expected target arrival
rate, desired surveillance update rate, or physical energy
constraints of the robotic system.

B. Automated Surveillance in Simulation

To illustrate the effect of a human interaction, we perform
a simple experiment in an orthogonal four-room environment
as demonstrated in Fig. 3. Fig. 3a shows a tour solution
autonomously generated from a uninformed uniform prior g0



(a) (b) (c)

Fig. 4: Example of the effect of interaction on route surveil-
lance generation in a complex environment. (a) shows the
baseline case, where a route is generated autonomously with
a uniform target distribution. (b) shows the impact of a single
interaction, where a route after the target distribution prior
is modified to elevate an area of higher target probability,
shown as the red circle. (c) shows the autonomous route
generated after two interactions.

with no human-provided knowledge of the target distribution,
which we consider a baseline. We constrain the resources
available (i.e., the budget, B) so that full coverage of the
map is not possible, to examine the impact that can result
from an interaction in our system. As a result, in Fig. 3a
the map is not fully covered, but the two rooms nearest to
the starting point, and part of the third, are well-covered.
Fig. 3b shows the same map after a single human interaction
indicated a higher target belief probability (depicted in the
figure and the user interface as a red circle in the bottom right
room). The informed solution tour covers the designated area
of higher target belief. Additional, lower-cost viewpoints are
found by HARP that are near the path and within budget.
Importantly, in this case the quantitative “reward” of the
solution in Fig. 3a is similar to Fig. 3b with respect to the
uniform g0, but Fig. 3b qualitatively provides better coverage
of the environment.

For the next experiment, we construct autonomous surveil-
lance routes in a more realistic environment, as illustrated in
Fig. 4. In the baseline case shown in Fig. 4a, a circular route
generated from a uniform prior target distribution g0 achieves
good coverage of the environment, subject to the budget B.
Fig. 4b shows the route generated from a single interaction
g1 that places a higher probability of target presence in the
lower righthand room. The new route sacrifices coverage
of the upper left area to fully cover the lower right room,
a decision that was made without explicit instruction by
the human teammate. In Fig. 4c, we see the increasing
shaping effect the human’s interaction has, as a second area
of higher target presence likelihood is placed in the upper
right room for g2. Now, because of the constrained budget,
the surveillance route skews strongly to cover the higher
likelihood areas at the expense of other areas. These results
illustrate the power of this novel solution. Without directly
instructing the robot or even complete communication of
target distribution, the human teammate is able to guide the
generation of an autonomous surveillance route.

We examine the performance increase for such human-to-

robot interaction versus a baseline method with no interaction
by measuring the target detection rate over a large sample
set for our complex simulated environment. This experiment
evaluates the contribution of such interactions to resource-
constrained surveillance route planning (formulated in Eq. 5).
We also show several budget B values to illustrate the impact
of resource availability. The idea behind these experiments
is to evaluate the effect of interaction on target detection
performance. Rather than conduct a large-scale user study,
we simulate human input. Given a hidden underlying ground-
truth target distribution, our human-simulator generates a set
of interactions ordered based on the size and probability
value of each area of elevated probability in the ground truth,
then communicates each interaction via the same mechanism
as the human interface (i.e., ROS topics).

Fig. 5 shows box plots of 210 experiments, 10 per plot,
with varying budget values. Each box represents a number
of interactions, from baseline (no interactions, shown in red)
to n interactions, where n is the number of elevated areas of
target presence. Figs. 5d and 5b show the ground-truth target
distribution probabilities for each set of experiments. These
results show that, compared to baseline, routes generated
from interactions in general reduce the variance of the target
detection performance, and increase overall target detection.
It is interesting to note that in some cases there is a point of
diminishing returns with respect to interactions. In situations
with sufficient budget B, it may not be necessary to provide
a full target belief prior to the robot, as most autonomous
surveillance routes will provide sufficient coverage from only
a partially updated belief prior. See, for example, Fig. 5a for
B = 45 between Interactions 2 and 3.

C. Real-world Experiments for Urban Surveillance

In these experiments, we evaluate our HARP method in an
automated surveillance application in a real-world setting. A
Clearpath Robotics Jackal robot (Fig. 6a) was used for these
experiments, equipped with a Velodyne VLP-16 LiDAR and
an ASUS Xtion camera.

Our experiments take place in a realistic field envi-
ronment consisting of multiple concrete buildings and a
street arranged and staged as a cluttered village marketplace
(Fig. 6b). To simulate targets, 10 AprilTags2 were placed
throughout the environment by a researcher not otherwise
involved in the experiment. To demonstrate the robust exe-
cution of our feedback system, as in Sec. V-B, we attempted
baseline tours (0 interactions), and tours after 1 and 2
interactions, 12 each for 36 surveillance tours total. Of these,
35 tours completed successfully; one set was aborted during
the n = 1 interactions run when the robot failed.

For these experiments, we constructed tours to stay within
20m of the middle of the marketplace, and used a distance
budget B of 150m, with initial viewpoint count V = 87 and
λ = 35. All tours began at the same location. The HARP
system generated a tour route, under budget B, after an
interaction (initially no interaction), and the robot conducted

2https://april.eecs.umich.edu/software/apriltag.html



(a) (b)

(c) (d)

Fig. 5: Results comparing baseline interaction (red box) to different numbers of human interactions (blue boxes) across
budget parameters. (a) shows target detection performance where there are two areas of high target likelihood shown in the
map in (b), with budget B = (30, 35, 40). (c) shows performance for three areas of high target likelihood shown in the map
in (d), with B = (35, 40, 45). The top and bottom of the boxes represent the interquartile range (middle 50% of samples),
the purple diamond is the mean, and the whiskers represent the overall value range.

(a) (b)

Fig. 6: Mobile robot (a) and realistic environment (b) used
in the real-world experiments.

autonomous navigation using a kinematically feasible motion
planner. Tour generation took approximately 5-15 seconds on
a computer with an Intel Core i7 2.90GHz Quad Core mobile
processor.

The actual distance traveled and the number of unique
AprilTag detections were calculated for each complete tour,
and the results are shown in Fig. 7. We observe that while
there is a high amount of randomness in the executed path
length, probably as a result of both the stochastic nature

of our solution and kinematic planning over a real world
environment, all but two (i.e., 94%) of the planned paths
when executed stayed within the budget B (Fig. 7a), giving
validity to our use of the trade-off parameter λ. We plan on
examining the distribution of the randomness in surveillance
tour length and its impact on performance in future work.
There was also noise in the target detection, which may
be due to variability in the orientations achieved by the
kinematic motion planner; however, we also observe an
increase in the mean number of target detections between
1 and 2 interactions (Fig. 7b), and we believe this outcome
can be further refined in future experiments.

VI. CONCLUSION

In this paper, we present a novel Human-robot Au-
tonomous Route Planning (HARP) method for optimizing
autonomous surveillance route performance for robots using
minimal human interaction in resource-constrained surveil-
lance applications, i.e., where full coverage of the environ-
ment is not possible. The HARP approach uses a target
belief prior to autonomously construct a surveillance tour
for a robotic system that maximizes reward based on that
prior. A human teammate, with knowledge of more accurate



(a)

(b)

Fig. 7: Experimental results from 34 real-world experiments.
(a) shows distance traveled and (b) shows target detections
out of 10 possible targets.

target distributions, interacts concisely with the robot by
providing updates to the belief prior to shape the generation
of surveillance tours to optimize detection performance. To
evaluate the performance of the HARP method, experiments
using both simulations and a real robot are performed for
a surveillance task in an urban environment. Our results
validate that interactions outperform a baseline case, and with
successive minimal interactions, target detection performance
increases.
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