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ABSTRACT

Collaborative multi-sensor perception enables a sensor network to provide multiple views or observations of an
environment, in a way that collects multiple observations into a cohesive display. In order to do this, multiple
observations must be intelligently fused. We briefly describe our existing approach for sensor fusion and selection,
where a weighted combination of observations is used to recognize a target object. The optimal weights that
are identified control the fusion of multiple sensors, while also selecting those which provide the most relevant or
informative observations. In this paper, we propose a system which utilizes these optimal sensor fusion weights
to control the display of observations to a human operator, providing enhanced situational awareness. Our
proposed system displays observations based on the physical locations of the sensors, enabling a human operator
to better understand where observations are located in the environment. Then, the optimal sensor fusion weights
are used to scale the display of observations, highlighting those which are informative and making less relevant
observations simple for a human operator to ignore.
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1. INTRODUCTION

Sensor fusion and selection enables a sensor network or multi-robot system to provide collaborative perception,
fusing multiple observations in order to gain a unified understanding of an environment. Sensor networks
provide observations of objects and scenes from multiple perspectives.1 In complex environments, such as those
encountered in search and rescue or military operations,2,3 individual sensors can be obstructed or interfered
with. In order to effectively fuse observations from a sensor network where some observations are not relevant, it
is critical to be able to select the most informative observations and rely on these for object and scene recognition
tasks.

Following the successful fusion of multiple sensor observations and the selection of the most relevant, a human
operator must be made aware of this information. As sensor networks can provide a large number of observations,
the amount of information available can be overwhelming and exceed the cognitive load limit of a human. In
order to provide enhanced situational awareness, these observations must be displayed in an intelligent manner,
highlighting the most relevant and making the less informative observations simple to ignore. In this way,
situational awareness can be enabled without exceeding the cognitive processing abilities of a human operator.

In this paper, we propose a novel approach to enhanced situational awareness based on fusion of sensors in
a sensor network and the selection of relevant sensor observations. We describe a formula based on regularized
optimization that unifies sensor fusion for recognition with the selection of relevant observations and feature
modalities. We present sparsity inducing norms in order to identify only a small number of observations and
modalities. A linear combination of observations is used to approximate target objects or scenes, identifying
the target with the smallest approximation error. Then, spatial positions of sensors and the identified optimal
sensor fusion weights are utilized to display the observations to a human operator. By integrating sensor position
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and importance into the display, we provide enhanced situational awareness. The key contribution of this work
is the proposal of utilizing a weighted selection of sensor observations to enhance situational awareness of an
environment.

The remainder of this paper is structured as follows. We discuss related work in Section 2. We describe our
approach for multi-modal sensor fusion and selection in Section 3. In Section 4, we describe the use of the sensor
fusion weights for enhanced situational awareness. Finally, we conclude the paper in Section 5.

2. RELATED WORK

This proposed work of sensor fusion and selection builds on research in sensor coverage, active perception, and
multi-view perception. We briefly review existing work in each of these areas.

Sensor coverage is the problem of placing or controlling robots in order to maximize the overall observation of
an environment. While this is often done with multi-robot systems, many approaches have been developed that
identify fixed sensor placements that maximally cover an environment.4–6 The coordination of multiple robots
is more common though, often as a precursor to collective sensing with observations merged together.1 This
can be done by dividing multi-robot systems to focus on specific sub-areas of an environment,7 or dividing8 or
deploying9,10 multi-robot systems based on the sensor capabilities they possess. In addition, approaches have
considered integrating observations from sensors located on agents performing other tasks instead of coordinating
them specifically to maximize sensing (such as cars driving through an environment). Research in areas such as
this focus on tasks like correspondence identification, or recognizing which objects in each observation are the
same object.11 Our work takes as input observations from sensors and does not require the ability to coordinate
or move them, so can operate with an active multi-robot system or from observations gained elsewhere (such as
cars).

The second research area of interest is active perception, where sensors are controlled to obtain optimal
views of objects or scenes, often by adjusting their positions or settings.12 This is distinct from multi-robot
sensor coverage as it can focus on tracking specific objects or planning paths to observe specific areas of an
environment.13,14 Previous work here has utilized information measures such as entropy15 or control measures
such as scheduling algorithms16 or particle filters.17

Finally, the field of computer vision has focused on recognition tasks through multi-view perception. These
multiple views could be obtained from a sensor network, or a single sensor over time. Recognition based on
multiple views has shown promising results on human activity recognition,18 walking gait recognition,19 and
object recognition.20,21 While these approaches enable accurate recognition, they can be very computationally
expensive as they involve more data than single view approaches. In light of this, methods have been developed
to identify the most representative views22,23 or to select two-dimensional views that can most accurately recon-
struct a three-dimensional model.24–27 Methods to integrate multiple views into unified recognition approaches
have utilized neural networks28 and have also been based on more non-traditional ideas such as semantics29 or
search algorithms.30

3. SENSOR FUSION AND SELECTION

In this section, we briefly describe our approach for sensor fusion and selection. ∗ This approach provides target
recognition by minimizing the approximation loss between a linear combination of input sensor observations.
This linear combination, which weights each sensor observation in order to fuse them, also acts to select the
most relevant or informative observations.

We begin by first defining the targets that our sensor network is used to identify. These targets can be
objects, areas, faces, etc. We denote p types of targets as T = [t1, . . . , tp] ∈ Rd×p, where ti ∈ Rd is a feature
vector representing a reference observation of the i-th target. Because of this need for a reference observation,
some prior knowledge of the target is necessary. This vector is of dimensionality d, with d =

∑M
m=1 dm, where dm

represents the dimensionality of the m-th sensing modality provided by the sensing network, which can provide

∗We note that this approach is previously described in a work under review, and is not the novel focus of this
manuscript. It is described briefly to provide context for later sections.



M different modalities (e.g., RGB camera images, thermal sensor observations, etc.). The number of targets
available to the sensing system, p, can be changed as the system operates - for example, as mission requirements
adjust, targets can be added or removed as appropriate.

We then denote observations from n sensors as X = [x1; . . . ;xn] ∈ Rn×d, with xj ∈ Rd denoting the current
observation of the j-th sensor. As with the reference observation of each target, the observation from each sensor
is of dimensionality d, or the sum of the dimensionality of each available modality. Our approach then attempts
to approximate each reference target through a linear combination of sensor observations:

min
w
‖X>w − ti‖22 (1)

By finding a sensor fusion weighting w that minimizes this loss function for each target ti, we both find an
optimal weighted combination of sensors (w) but are also able to identify the target where the approximation
error is the lowest (t∗).

Our approach then introduces three regularization terms to aid in identifying an optimal w, with the assump-
tion that only a small number of the n available sensors and the m available modalities should be informative:

min
w,u
‖X>w − ti‖22 + λ1‖Xu−w‖22 + λ2‖w‖1 + λ3‖u‖M (2)

Here, λk, k = {1, 2, 3} represent adjustable hyperparameters that control the importance of each regularization
term. The three introduced terms have the following effects:

• ‖Xu−w‖22: This term relates the sensor fusion weighting w to u, which weights the modalities available
from the sensor network.

• ‖w‖1: This term applies the `1-norm on the sensor fusion weighting w, encouraging sparsity to identify
the most informative sensors.

• ‖u‖M: This term applies the `1-norm between sections within u that apply to each modality, encouraging
the identification of discriminative modalities.

The final approach presented in Eq. (2) is minimized for each target ti. This identifies the target recognized
by the sensor network, and also identifies an optimal sensor fusion weighting w, which is then used to provide
enhanced situational awareness, the primary focus of this work.

4. ENHANCED SITUATIONAL AWARENESS

Our main approach to provide enhanced situational awareness from a sensor network through sensor fusion and
selection is described in this section. This is done through two main focuses: first, sensor observations are
displayed visually based on the spatial relationships of the sensor network; and second, the visual display size
of sensor observations is controlled by the optimal sensor fusion weighting w. These two focuses mean that
observations from a large sensor network can be displayed in an informative manner, by being located relevantly
and by highlighting relevant observations while making less relevant observations easier to ignore. The effect of
our approach is illustrated through simulation in Figure 1, with the target being an observation of the grey car.

First, we consider Figure 1. This shows an overhead view of the scene, where a multi-robot system is acting
as the sensor network. The simulation environment provides both RGB images and depth camera observations
of the scene, but only RGB images are displayed in later figures for simplicity. We can see that this system of
five robots is providing views of the target object from a variety of angles and distances, with some obstructed
by obstacles.

Figure 1(b) shows a presentation of these observations when neither spatial relationships nor relevance is
considered. While this presentation provides information to the user, it is difficult to identify which sensors are
providing which views, or to easily identify which views are the most informative. Naive systems that display
data as such not only fail to identify view relevance, but also dismiss the valuable information provided by sensor
locations.



(a) Scene Overhead (b) Views

(c) Distributed Spatially (d) Weighted Observations

Figure 1. This series of figures shows the affect of our proposed approach. Figure 1(a) shows an overhead view of a multi-
robot sensor network. Figures 1(b) - 1(d) show a progression between just presenting views normally and presenting views
through our approach, which provides enhanced situational awareness.

Figure 1(c) shows the effect of the first focus of our approach. In this case, each observation is still displayed
at a fixed size (possible varying from Figure 1(b) due to scaling in the manuscript). However, as opposed to a
naive display, observations are now shown based on the physical locations of the sensors providing them. With
fixed sensor network (such as security cameras) we would have defined measurements with their placements, and
with a sensor network based on a multi-robot system such as this we could have GPS or some other localization
method (e.g., SLAM) providing sensor locations. Our proposed approach takes advantage of this by displaying
observations based on these known spatial locations - i.e., for each sensor observation xj , we have a known (x, y)j

or (latitude, longitude, altitude)j . By displaying observations at locations that visually relate to their real-world
locations, we enable human operators to take advantage of this extra context.

Finally, our full proposed approach is based on the second focus, where we believe enhanced situational
awareness is best provided by displaying the most relevant or informative observations to a human operator.
To do this, we utilize the sensor fusion weight vector w, where each element wk ∈ w represents the weight of
observation k. As we do not constrain the total sum of weights in w, we define it such that wtotal =

∑n
i=1 wi.

From this, we can determine that the display size each observation should merit is equal to its relevance:

sizek = wk/wtotal (3)

We can the use this generate enhanced situational awareness displays such as that shown in Figure 1(d). In this
display, observations are still spatially related to the sensor providing them, but their display sizes are scaled
according to Eq. (3). In this figure, w ≈ [0.025, 1, 0.25, 0.75, 0.125], corresponding to the order in Figure 2(b)
and approximated for ease of explanation. We can observe that the most relevant view, provided by the second
sensor, is visually the largest and a human operator would be very aware of it. The second most relevant,
provided by the fourth sensor, is smaller but still visually useful. The more irrelevant observations, such as that
of the first sensor, whose camera angle is completely obstructed by a guardrail, are scaled so small as to be easily
ignored.



(a) Scene Overhead (b) Views

(c) Distributed Spatially (d) Weighted Observations

Figure 2. Further evaluation of our proposed approach on a physical system. Figure 2(a) shows an overhead view of a
multi-robot sensor network. Figures 2(b) - 2(d) show a progression between just presenting views normally and presenting
views through our approach, which provides enhanced situational awareness.

We provide further evaluation in Figure 2, on a physical multi-robot system acting as the sensor network. As
with the earlier figure, Figure 2(a) shows an overhead view, with six robots observing a helicopter, with some
views obstructed by a wall. Figure 2(b) shows a display of these observations with no localization or informative
scaling. Non-relevant views occupy at least a third of this display, with no information about the sensor network’s
spatial layout provided. Figure 2(c) shows this scene displayed from the knowledge of the (x, y, z)j locations
of each observation xj , which is provided by the overhead camera. This display provides enhanced situational
awareness already, by showing that sensors on the left of the target are impeded by an obstacle. Our full approach
is then shown in Figure 2(d), where the two most relevant views are highlighted, and two extremely irrelevant
views (with (w1 + w2) ≪ 1% of wtotal, where w1 is the top-left of Figure 2(b) and w2 is the first-column,
second-row) are almost not displayed - that is, these are the two views visible only from their red outlines.

5. CONCLUSION

Collaborative perception enables a sensor network to perceive an environment from multiple perspectives. By
fusing these sensors intelligently, we can identify the sensors which have the best views, in order to obtain an
optimal understanding of the environment. We provide an overview of an approach that can provide accurate
recognition by fusing the observations of multiple sensors while also identifying the importance of individual
sensors. Then, our novel contribution to enhance situational awareness incorporates sensors’ physical locations
and observation relevance, in order to display observations to a human operator based on their importance and
their positions. Through evaluation in both simulation and on a physical multi-sensor system, we show that our
approach can display observations in a way that provides awareness of both sensor location and importance.
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