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Abstract—Multi-agent systems have become ever-present in
modern society, whether as multi-robot teams, sensor networks,
or social networks. While ensuring the connectivity and robust-
ness of multi-agent systems has seen extensive research, the
problem of disrupting the connectivity of a multi-agent system
has remained largely unaddressed. Yet, this capability can be
essential in certain applications, such as responding to a hostile
multi-robot system or controlling the flow of disinformation in
a social network. In this paper we propose a novel method to
disrupt the connectivity of a multi-agent system with uncertain
relationships. We represent a multi-agent system as a graph,
with edges denoting the probability of communication between
agents. We introduce the problem of identifying a subgraph which
minimizes the overall connectivity of the multi-agent system. We
formulate a novel approach to identify optimal sets of vertices
to remove by approximating a minimization of the algebraic
connectivity, given constraints on the number of vertices to
disconnect. We show through evaluation on simulated multi-
agent systems that our approach is able to effectively disrupt the
connectivity of a multi-agent system, and discuss its comparative
complexity to existing approaches while attaining these superior
results.

Keywords—distributed systems, multi-agent systems, connec-
tivity disruption

I. INTRODUCTION

Multi-agent systems have become critical in many applica-
tions, and in order to function effectively or accomplish goals,
they must be able to work collectively. Multi-robot systems can
then provide sensor coverage and respond to disaster areas [1]
or navigate collectively and orient themselves [2], and multi-
agent systems such as social networks can efficiently transmit
information [3]. To do all of this, these multi-agent systems
must be able to communicate and transfer information. Multi-
agent systems require the ability to effectively communicate,
coordinate, and attain consensus in order to operate and
accomplish their objectives. Even distributed algorithms often
require at least partial information.

However, in many cases the disruption of connectivity in
multi-agent systems can be a critical capability. Social media
companies may want to disrupt the flow of false or misleading
information by targeting a small number of influential users
as opposed to mass removal. Security and defense systems
may need to respond to unknown and possibly hostile multi-
robot systems by prioritizing robots to target - consider a
multi-robot system consisting of drones flying into an airport
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Fig. 1. [Best Viewed in Color] An uncertain multi-agent system can be
represented by a number of possible connectivity edges (top frame). However,
the actual connectivity graph for this multi-agent system may involve only a
subset of these possible connections that actually exist (middle frame, in solid
instead of dashed). Our approach then identifies a set of vertices to remove
(circled in red) that optimally disrupt the connectivity graph of the uncertain
multi-agent system (bottom frame).

airspace, where certain agents need to be destroyed in order to
interdict the attack. In both cases, the exact network structure
of the multi-agent system may be uncertain - i.e., which social
network users actually trust each other for information, which
robots have the capability to communicate, or which robots
have the need to communicate. The capability to disrupt the
connectivity in uncertain multi-agent systems is critical.

The areas of multi-agent connectivity, coordination, and
consensus have seen extensive research [4], [5]. In particular,
connectivity maintenance has been addressed to maintain a
certain k-connectivity [6] or algebraic connectivity [7] within
a multi-agent or multi-robot system. Despite this focus, little
attention has been given to the problem of disrupting con-
nectivity in multi-agent systems. While some research has
addressed the problem of removing redundant links [8] or
slowing consensus rates [9], the problem of actively disrupting
the connectivity in an uncertain multi-agent system has been
largely unaddressed.

In this paper, we introduce a novel approach for the
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disruption of connectivity in uncertain multi-agent systems.
We first define a probabilistic representation of the multi-
agent system based on observations of the positions of agents
within it. We then formulate the problem of graph disruption
by introducing the problem of selecting a subset of vertices
that minimizes the algebraic connectivity of the multi-agent
system. Then, we redefine and approximate this optimization
problem by identifying the optimal selection of vertices based
on their Fiedler connectivity cost. Through this, we identify an
ordering of vertices to remove in order to optimally disrupt the
graph. Illustrated in Figure 1, we first consider the distances
between agents (top frame). We then probabilistically estimate
the actual network connections between agents (middle frame).
Finally, our approach then identifies vertices to remove in
order to optimally disrupt the graph.

This paper has two important contributions.
• First, we present a principled formulation to select ver-

tices based on their connectivity values in order to
optimally disrupt a given graph.

• Second, we show through extensive simulation that our
approach is able to significantly outperform other meth-
ods in graph disruption while operating at similar com-
putational complexity.

II. RELATED WORK

When we consider the problem of connectivity disruption,
we must first consider the opposite problem of maintaining or
increasing the connectivity of multi-agent systems, which has
seen extensive research. Then, we look at the limited research
into disrupting connectivity, which has primarily focused on
removing redundant communication links, prioritizing network
optimization over interrupting communications.

A. Multi-Agent Connectivity

Maintaining and increasing the connectivity of multi-agent
systems is an area of active research. A variety of methods
have been created to maintain minimum k-connectivity [6],
efficiently do maintenance and perform repairs on k-connected
networks without allowing network partitioning or longer rout-
ing paths from node failures [10], and maintain connectivity
metrics under a variety of circumstances, such as walled [7]
and adversarial [11] circumstances. The methods found above,
in order to accomplish the variety of goals, employed and
utilized sub-graph structure [6], [7], gradient ascent/descent
[11]–[13], and game theory [14].

Sub-graph structure approaches create and maintain k-
connectivity by enforcing additional constraints upon the
multi-robot system to ensure robustness within the network
[6]. Another approach builds efficient connectivity in a walled
environment through use of a k-connectivity matrix and by
optimizing the Fielder value of the weighted Laplacian [7].
This method maintains quality communication even in scenar-
ios where a hop-count constraint cannot be satisfied.

Many other methods of maintaining or creating connectivity
in multi-agent systems rely upon a gradient ascent- or descent-
like procedure and measure of algebraic connectivity. Some

control global connectivity by using gradient descent to control
the local connectivity of ‘critical’ nodes [12]. Similar work
instead uses a gradient control strategy, still based on algebraic
connectivity, to maintain global connectivity without managing
local connectivity [15]. In adversarial conditions, one metric
combined a decentralized, iterative approach to maintaining
algebraic connectivity with game theory, resulting in a Nash
Equilibrium and equilibrium network [11]. Finally, [14] ad-
dressed the issue of maintaining connections across realistic
networks with uniform-fading and disk based communication
methods. While these provide insight to the ways graphs can
stay connected, they do not provide algorithms or analysis of
how these graphs may be disconnected.

B. Connectivity Disruption

The disruption of connectivity has mostly been researched
in the cases of removing redundant links from multi-agent
systems or general networks. Removing redundant links can be
done for a variety of purposes. Some algorithms can improve
the efficiency of resource usage based on graph spectra [8].
Others greedily remove links while maintaining synchroniza-
tion speeds [16]. These works focus on removing links and
nodes while preserving graph connectivity and therefore would
not identify links that would suit the goals of our graph
disruption work.

Work on identifying and ranking nodes and links may also
be of assistance to us. One such method utilizes ‘k-shell’ (a
measure of influence) methods of determining node coreness
in a network [17]. This method aims to accurately identify
nodes’ positional importance and spreading influence, which
can aid in disruption. Another method identifies a lower limit
on transition probabilities, where values above this point no
longer impact the convergence rate of the graph [18]. This
work again does not focus on disruption, but is useful in
identifying nodes and links that are possibly important to
disrupt.

Despite this research, little has been done to actively disrupt
the communication, coordination, and cohesion of multi-robot
systems. Research is needed to effectively analyze the structure
of multi-agent systems in order to most capably disrupt them.

III. OUR PROPOSED APPROACH

Notation. In this paper, we denote matrices X ∈ Rn×m with
boldface uppercase letters, and vectors x ∈ Rn with boldface
lowercase letters. A matrix element in the i-th row and j-th
column is indicated as xij and the i-th vector element is xi.

A. Background

A natural way to describe a multi-agent system is with a
graph G = {V, E}, where a vertex vi ∈ V represents an agent
and an edge eij ∈ E represents the relationship between the
i-th and j-th agents. We can then represent the edge set E
with an incidence matrix A = [aij ] ∈ Rn×m, where n is
the number of agents (or vertices) and m is the number of
edges present in the multi-agent system. If the i-th agent is
connected to the j-th agent via the k-th edge in the system,
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then aik = 1 and ajk = −1. Given this, we introduce a final
representation of the graph with the Laplacian matrix L ∈
Rn×n. The Laplacian matrix is commonly defined as L =
degree(A) − A, with A being the adjacency matrix of the
graph. When A instead represents the incidence matrix of the
graph, the Laplacian is then defined as L = AA>.

A key measure of a graph’s connectivity is its Fiedler value
[19], also known as its algebraic connectivity. The Fiedler
value is denoted as the second-smallest eigenvalue of the
Laplacian matrix of the graph. If we consider the eigenvalues
to be ordered such that λ(L) = λ1 ≤ λ2 ≤ · · · ≤ λn, where
λi is the i-th smallest eigenvalue, then we can define λ2(L) to
be the algebraic connectivity of the graph G described by L.
Algebraic connectivity reaches a minimum value of 0 when the
graph is disconnected. The algebraic connectivity of a graph
is also directly associated with its ability to reach consensus
[20].

We can then formulate the problem of graph disruption by
vertex removal as that of finding a subgraph that minimizes
the algebraic connectivity:

min
Ĝ

λ2(L̂) (1)

s.t. Ĝ ⊆ G

where L̂ describes the subgraph Ĝ and the removed vertices
being those in G but not in Ĝ.

B. Uncertain Graphs

In this paper, we specifically consider the more challenging
condition of uncertain graphs, as opposed to graphs that
represent certain communication links between agents. Given
an observation of a multi-agent system consisting of n agents,
we may only have access to the spatial positions of each agent,
and not the internal communication or coordination structure
or the specific capabilities of individual agents. I.e., we may
know that agents i and j are some distance apart, but are
unsure whether this means these agents can communicate or
sense each other.

Due to this, we initially consider a graph describing spatial
relationships between agents Gdistance, represented by an
adjacency matrix D = [dij ] ∈ Rn×n where dij denotes
the actual observed physical distance between the i-th and
j-th agents. From this, we need to generate a probabilistic
incidence matrix given the distances in D. We rely on two
assumptions: a) when we observe the multi-agent system, it is
at least 1-connected (that is, a k-connected graph is one that
remains connected when fewer than k vertices are removed);
and, b) the larger a distance dij is, the less likely it is to
represent an actual communication or coordination link.

We define a probabilistic incidence matrix A ∈ Rn×m. Each
column ak represents an edge, where two elements are non-
zero and the remaining elements are zero. Given a column ak
that describes the link between agents i and j, aik represents
the probability that the i-th agent is able to communicate with
the j-th agent, given the spatial distance dij . Accordingly,
instead of this value being 1 as in a typical incidence matrix,

Fig. 2. Edges in the multi-agent system can be represented by their probability
of providing communication and connectivity (possible edge probabilities
depicted in the figure via line thickness).

this value is bounded such that 0 ≤ aik ≤ 1 (with the
corresponding entry ajk is bounded −1 ≤ ajk ≤ 0). All other
values amk where m 6= i and m 6= j are equal to 0.

We define elements in this probabilistic incidence matrix as:

aik =
cmax − 1

dij

cmax − cmin
+ ε (2)

visualized in Figure 2, where cmax = 1
max(D) , cmin =

1
min(D) such that D remains k-connected, and where

ajk = −aik if j > i (3)

to maintain the standard incidence matrix notation, where an
edge k between agents i and j is represented by aik = w and
ajk = −w, where w denotes the value of the edge.

C. Vertex Selection

Given the above problem definition, the goal of our ap-
proach is to identify a subgraph Ĝ ⊆ G that minimizes the
connectivity of G while removing only a limited number of
vertices, denoted as r. The number of vertices that must remain
in the graph is then denoted as q, where q = n− r. We select
this subgraph with a selection matrix X ∈ Rn×n, where off-
diagonal elements are equal to 0 and diagonal elements xii
represent the importance of the i-th vertex for the overall graph
connectivity.

We can then consider minimizing the algebraic connectivity
of the graph defined by A, redefining Eq. (1) as:

min
X

λ2(XAA>X) (4)

Here, we select a subgraph Ĝ through the Laplacian matrix
L̂ = XAA>X.

The problem defined in Eq. (4) is difficult to directly
minimize, so we instead solve an alternate approximate version
of the problem. We introduce an incidence cost matrix F ∈
Rn×m, where an element fij corresponds to the Fiedler cost
of the corresponding incidence matrix entry aij . We calculate
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this cost from the Fiedler vector, which is the eigenvector
associated with the Fiedler value. The Fiedler vector z ∈ Rn,
due to its ties to the algebraic connectivity, can be used to
partition a graph. We utilize it to approximate the connectivity
represented by each edge in the graph:

F = [fij ] =
1

abs(zi − zj)
(5)

The incidence cost fij of each edge in G is equal to the inverse
of the difference between each node’s value in the Fiedler
vector.

To solve for the optimal X which minimizes the algebraic
connectivity, we consider its diagonal as a selection vector x:

x = diag(X) (6)

As q vertices must remain in the selected subgraph, we enforce
that the sum of values in x must equal q:

‖x‖1 = q

or, more easily calculated:

x>1 = q (7)

where 1 is a vector of 1s that is appropriately dimensioned.
We then reformulate the minimization problems in Eqs. (1)

and (4) as that of identifying a minimum selection of vertices
with the selection vector x from the incidence cost matrix F:

min
x
‖F>x‖22 (8)

We bound x such that 0 ≤ xi ≤ 1 and introduce Eq. (7) as
a regularization term to ensure q vertices remain in the graph:

min
x
‖F>x‖22 + β(x>1− q)2 (9)

s.t. 0 ≤ x ≤ 1,x = diag(X).

where β is a hyperparameter controlling the influence of the
squared regularization term based on Eq. (7).

After finding the optimal x∗ to minimize Eq. (9), it can
be sorted to identify the order in which vertices should be
removed. That is, an ideal scenario may consist of removing a
single vertex and x∗ results in the opposite of a one-hot vector
(i.e, a single entry is 0 and all other entries are 1) - in this
case, it is simple to see which vertex to remove. However, to
remove multiple vertices and deal with the case where entries
are somewhere between 0 and 1, we can sort x∗:

x̂ = sort(x∗) (10)

Now, the first vertex to remove corresponds to x̂1, the second
corresponds to x̂2, and so on until we have reached x̂r.

IV. RESULTS

A. Experimental Setup

We compare our proposed approach to multiple other meth-
ods based on existing graph connectivity metrics.
• Fiedler Low: Inspired by the method of normalized cuts

[21], this approach disrupts the graph by removing the
vertex closest to the sign boundary in the Fiedler vector.
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Fig. 3. [Best Viewed in Color] Algebraic connectivity over multiple vertex
cuts for small (n = 10) multi-agent systems. Our approach, shown in blue,
outpaces compared approaches.

• Fiedler High: Inspired by the heuristic presented to grow
well-connected graphs in [22], this approach disrupts the
graph by removing the vertex corresponding to the largest
absolute value in the Fiedler vector.

• Eigencentrality: This approach disrupts the graph by re-
moving the vertex with the highest eigenvector centrality,
which is a measure of a vertex’s influence in a graph. The
eigenvector centrality of a vertex v is denoted as:

eig(vi) =
1

λ

∑
vj∈N(vi)

eig(vj) (11)

where N(v) denotes the neighborhood of a vertex v and
λ is a constant.

• Betweenness: This approach removes the vertex with the
highest betweenness centrality, which weights vertices
by the number of times they appear on shortest paths
between other pairs of vertices. Mathematically:

betweenness(vi) =
∑

k 6=i6=j

σkj(vi)

σkj
(12)

where σkj is the number of shortest paths between the h-
th and j-th vertices and σkj(vi) is the number of shortest
paths that pass through vertex i.

• Random: This approach selected a random permutation
of vertices, with no weight given to connections.

These approaches are all calculated given the full approxi-
mated graph; e.g., edges are calculated by Eq. (2) and vertices
are sorted for each method, resulting in a vertex list analogous
to x̂.

We compare our proposed approach and these mentioned
approaches based on the metric of algebraic connectivity. As
defined earlier, this equals λ2(L̂). Given that this is a typical
representation of graph connectivity [19] and is an integral
mathematical part of the compared methods Fiedler Low,
Fiedler High, and Eigencentrality, this is an appropriate metric
to evaluate the disruption of graph connectivity.

B. Evaluation

We evaluate our approach on three variously sized simulated
multi-agent systems.
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Fig. 4. [Best Viewed in Color] Algebraic connectivity over multiple vertex
cuts for medium (n = 50) multi-agent systems. Our approach, shown in blue,
outpaces compared approaches.

systems consisting of 10, 50, and 100 agents, generated
statically in three dimensions, over 100 simulated multi-
agent systems. While the algorithms are only aware of the
probabilistic representation of the uncertain graph, each system
has a ground truth communication threshold cgt defined to be

cgt =
cmax + cmin

2
(13)

where cmin and cmax are defined as they are for Eq. (2).
This ground truth communication threshold is used for the
evaluation of the algebraic connectivity.

Thus, in evaluation we compute a probabilistic incidence
matrix A, based on the distance matrix D. We utilize this in-
cidence matrix A to compute all of our compared approaches,
including our proposed one. For each, we use A to identify a
vertex cut list, and then compute an evaluation metric on each
step of the cut list.

We first present results for small-sized multi-agent systems,
consisting of 10 simulated agents. The algebraic connectivity
for these systems are seen in Figure 3 for 0 (indicating the
average initial algebraic connectivity) to 5 vertex cuts. We
can see that our approach, displayed in blue, provides an
immediate improvement over other approaches. This advan-
tage increases as the number of cuts increases, resulting in
a significant disruption of the graph compared to traditional
methods, most of which fail to outperform random choice until
the fifth vertex removal. Note that the algebraic connectivity
can actually increase after a vertex removal, as it does in
Figure 3, whereas this would not happen after an edge removal.
If an approach selects a vertex that is only loosely connected to
the periphery of the graph, then removing that vertex results in
the remainder of the graph becoming more tightly connected.

We next present results for medium-sized multi-agent sys-
tems, consisting of 50 simulated agents. Results for these
are presented in Figure 4 for up to 25 vertex cuts. Again
we see a similar performance pattern, with our approach in
blue and able to attain superior performance. We again see
the next best performance from the Betweenness approach,
showing the value of this centrality measure in describing
vertex connectivity. The Fiedler Low approach achieves worse

performance than a random selection of vertices, as it also did
for the small systems. The inspiration of this approach, used to
divide graphs, means that the vertices selected by this approach
are not tightly connected to any grouping of the graph, and
thus not influential on the overall graph connectivity.

Finally, we present results for large-sized multi-agent sys-
tems in Figure 5, consisting of 100 agents each. We display
these results in Figure 5(a), for up to 50 vertex cuts, with
Figure 5(b) showing a detailed view of only up to 10 cuts.
We again see a similar performance pattern, with our proposed
approach outperforming any compared approaches. On these
large graphs, the compared approaches struggle to separate
from each other, with Betweenness performing the best after
10 cuts but being surpassed by Fiedler High in the full 50
cuts.

V. DISCUSSION OF COMPLEXITY

First, we propose that the formulation proposed by Eq. (9)
can be solved by typical gradient descent. By solving for the
derivative of Eq. (9), and given an initial guess of x (for
example, x0 = 1), we can then iteratively solve for the optimal
value x∗ by:

xk+1 = xk − α∇f(xk) (14)

where α is a learning rate parameter and ∇f(xk) is the
derivative of the formulation presented in Eq. (9). We can
reconstruct Eq. (9) without mathematical difference into:

min
x
‖F>x‖22 + β(x>1− q)(1>x− q) (15)

(as x>1 = 1>x), from which we can then compute the
derivative with respect to x as

∇f(x) = 2FF>x+ β(211>x− 2q1) (16)

With this derivative, we can calculate Eq. (14). After each
iteration, we adjust x such that

0 ≤ x ≤ 1 (17)

Each iteration of this approach is bounded by n × n
complexity, and thus this overall optimization algorithm is
upper bounded by O(kn2), where k is the number of itera-
tions. Therefore, the complexity of the minimization problem
described by Eq. (9) is governed by either the number of
iterations k or the number of agents n. If n > k, then this
formulation is bounded by the cost to compute the Fiedler
cost matrix, which requires an eigen-decomposition of the
Laplacian matrix L̂. In this case, the computation of our
proposed approach is bounded this type of computation, and
thus by O(n3), where n is the number of agents. If k ≥ n,
then the complexity of our approach is bounded by the number
of iterations required to converge.

We then consider the complexity of the compared algo-
rithms. The Fiedler Low, Fiedler High, and Eigencentrality
approaches all depend on the calculation of the eigenvalues
of the Laplacian, and thus similarly employ a computational
complexity of O(n3). Finally, the Betweenness approach is

Authorized licensed use limited to: University of Denver. Downloaded on March 28,2023 at 20:23:36 UTC from IEEE Xplore.  Restrictions apply. 



Vertex Cut Number

A
lg

eb
ra

ic
 C

on
ne

ct
iv

ity

15

25

35

45

0 10 20 30 40 50

Our Proposed Approach Fiedler Low Fiedler High Betweenness Eigencentrality Random

(a) Full Results

Vertex Cut Number

A
lg

eb
ra

ic
 C

on
ne

ct
iv

ity

39

41

43

45

0 2 4 6 8 10

Our Proposed Approach Fiedler Low Fiedler High Betweenness Eigencentrality Random

(b) Detailed Results of First 10 Vertex Removals

Fig. 5. [Best Viewed in Color] Algebraic connectivity over multiple vertex cuts for large (n = 100) multi-agent systems. Our approach, shown in blue,
outpaces compared approaches.

bounded by complexity O(nm + n2 log n) where m equals
the number of edges in the system [23]. For sufficiently large
and connected systems, where m = n(n−1)

2 , this approach is
closely upper-bounded by O(n3).

Overall, our proposed approach achieves a similar complex-
ity bound as the compared approaches. Considering the very
similar complexity performance, our approach clearly achieves
superior results.

VI. CONCLUSION

Multi-agent and multi-robot systems are pervasive in mod-
ern society. In order to operate effectively, these multi-agent
systems must communicate and collaborate, even in adversar-
ial environments. Hostile social networks and multi-drone sys-
tems need to be interrupted, with communication, connectivity,
and cohesion disrupted. We present an optimization-based
approach to identify optimal vertices to remove, based on for-
mulating an approximate version of the problem of minimizing
the Fiedler value of the multi-agent system. We show that our
proposed approximation outperforms other methods, including
both those focused on the Fiedler vector and those focused
on the centrality of the graph, and is able to best reduce the
algebraic connectivity of a graph, thus optimally disrupting it.
Our approach also achieves these superior results with similar
computational complexity to the compared approaches.
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