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Tracking and Relative Localization of Drone
Swarms with a Vision-based Headset

Maxim Pavliv1,2, Fabrizio Schiano2, Christopher Reardon3, Dario Floreano2, and Giuseppe Loianno1

Abstract—We address the detection, tracking, and relative
localization of the agents of a drone swarm from a human
perspective using a headset equipped with a single camera and an
Inertial Measurement Unit (IMU). We train and deploy a deep
neural network detector on image data to detect the drones. A
joint probabilistic data association filter resolves the detection
problems and couples this information with the headset IMU
data to track the agents. In order to estimate the drones’ relative
poses in 3D space with respect to the human, we use an additional
deep neural network that processes image regions of the drones
provided by the tracker. Finally, to speed up the deep neural
networks’ training, we introduce an automated labeling process
relying on a motion capture system. Several experimental results
validate the effectiveness of the proposed approach. The approach
is real-time, does not rely on any communication between the
human and the drones, and can scale to a large number of agents,
often called swarms. It can be used to spatially task a swarm
of drones and also employed without a headset for formation
control and coordination of terrestrial vehicles.

Index Terms—Aerial Systems: Applications, Human-Centered
Robotics, Localization

I. INTRODUCTION

M ICRO Aerial Vehicles (MAVs), often called drones,
represent a promising technology in a wide range

of applications such as aerial photography, mapping and
topography, delivery, search and rescue, inspections in hard-
to-reach environments, and border control [1]. In particular,
aerial swarms can multiply the capabilities of single-drone
systems [2] speeding up the overall task and increasing the
overall system’s resilience.

In parallel with the efforts to make drones more au-
tonomous [3], [4], there is an increasing interest in intuitively
controlling them. Human-Robot Interfaces (HRIs) define the
way commands are sent to a robotic system and how a human
user receives feedback. Most HRIs let humans control robots
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Fig. 1: Representation of our tracking and localization system.

via remote controllers, joysticks, keyboards, and mice and
receive feedback from the robots on screens, with LEDs, or
sound. In the effort to make HRI more intuitive, researchers
have experimented with Body-Machine Interfaces that rely on
body motion to control robots and on haptic feedback, and
virtual or augmented reality headsets [5], [6], [7], [8], [9].
However, most studies refer to a single human interacting with
a single robot and/or do not explicitly address the relative
localization of robots with respect to the human, which was
only partially tackled in our recent work [10]. Human-swarm
interaction is only at its dawn. A recent study [11] showed
a human operator controlling a drone swarm through a de-
centralized connectivity-maintenance approach. Instead, [12]
describes a human operator controlling multiple drones with
hand gestures and employing cameras available on each robot
to estimate the relative location between the human and the
drones by face recognition. This approach is problematic since
it requires the user to be in the field of view of each swarm
agent. Finally, in [13] the authors propose a novel control
technique that combines impedance control and vibrotactile
feedback. From all these works, it is clear that the human
has to self-localize with respect to the drones to establish an
interaction paradigm. However, previous studies often assume
that the drones access their relative positions with respect
to the human through an external localization system, such
as a motion capture system. This represents an important
limiting factor when deploying the system in unknown and
unstructured environments.

The human-to-drones relative localization problem (i.e.,
human understanding their relative pose with respect to each
drone of the swarm) is very similar to a single drone that must
compute its relative localization with respect to other mem-
bers of the swarm. Cameras and IMUs have been regularly
employed for this task due to the vehicles’ Size, Weight, and
Power (SWaP) constraints. Several studies leverage algebraic
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graph theory using either bearing [14], [15] or distance [16]
measurements for the control and relative localization of
the agents of the formations. However, those studies do not
employ on board perception and estimation and rely on an
external motion capture system to detect and track the agents.
Some studies address the drone-to-drone relative localization
problem by leveraging artificial markers (typically visual
tags) [17], [18], [19] mounted on each robot to estimate their
relative positions exploiting the markers’ geometric properties.
However, although the use of tags can be very useful in
laboratory settings, these do not scale well in real–world
settings with numerous agents due to the limited number
of unique tag IDs or geometric shapes and the difficulty of
equipping each robot with a tag. Finally, other works [20],
[21] achieve indirect cooperative localization by sharing a
set of characteristic features or landmarks across the agents.
However, despite these approaches work without line of sight
requirements, they need communication among the agents and
require to store local maps.

In summary, none of the previous studies provides humans
with the ability to automatically detect, track and localize
several drones at the same time, without relying on an external
infrastructure system, and in real–time.

We build on our previous work [10], where we spatially
task a single vehicle in an indoor environment. However, we
did not address the tracking and pose estimation problems
from the human perspective , which are solved in the current
work for complex multi-vehicles system. Estimating the full
pose can be crucial in multi-agent systems with directional
sensors or ones that need to interact with the environment
physically. We propose a lightweight, vision-based system
able to detect, track, and localize several drones in 3D space
with respect to a human equipped with a headset featuring a
camera and an IMU (eye–tracking glasses in our case). This
work presents multiple novel contributions. First, we show the
ability to deploy in real–time a Deep Neural Network (DNN)
for drone detection. Second, we describe a Joint Probabilistic
Data Association Filter (JPDAF) that tracks multiple drones
in the image. The filter is able to solve the data association
problem between the tracked objects and the measurements
obtained from the DNN. Third, we complement the tracker
with a 6–DoF (Degrees of Freedom) pose estimator based on
semantic keypoints extracted by a separate DNN. To speed up
the training process of both DNNs, we introduce an automated
labeling process. Finally, we show several experiments in
indoor scenarios to relatively localize the user with respect
to each agent of the swarm. Our method runs in real–time on
a small Nvidia Jetson TX2 module connected with the headset
and solves the relative localization problem relying exclusively
on local information using only the headset camera and IMU
data (i.e., no external localization system is available to the
drones and the drones do not communicate with each other
or with the user). Our approach can be deployed on–demand
since the detection, tracking, and estimation of the drones’
state can be initialized at any time and without relying on
any a priori information or triangulation strategies. Overall,
this approach enables detection, tracking, and localization of
multiple drones in real–time, making it possible to use it

Fig. 2: Overview of the proposed pipeline.
in environments without external positioning systems. Our
experiments show this capability in the scope of human-
swarm interaction, with numerous impactful applications, such
as security, surveillance, inspection, and search and rescue.
Nevertheless, the applicability of this approach extends to any
domain that involves detecting, tracking, and localizing swarm
agents (e.g., tracking potentially dangerous rogue, unknown
MAVs in airplane flight paths). Ultimately, this work will help
bring human-swarm research out of the laboratory setting and
allow safe, fast, and efficient multi–modal interaction between
humans and swarms in a multitude of real-world domains.

The paper is organized as follows. Section II presents an
overview of the proposed system while the overall methodol-
ogy is described in Section III. Section IV presents the exper-
imental results, whereas Section V discusses the conclusions.

II. SYSTEM OVERVIEW

A. Preliminaries

As shown in Figs. 1 and 3, we define the camera frame
denoted with C, the robot frame with D, the glasses’ frame
with G, and the world frame with W . Our algorithm provides
the state of the swarm (i.e, tracking state and pose information
estimates of each agent in the swarm) directly in the C frame.
To compare the results with respect to motion capture system
data, the pose of the robot and the camera one should be
expressed with respect to the W frame. Denoting with gAB
the relative pose between a frame A and B expressed as a
homogeneous transformation matrix, we build gWG and gWD
with the tracking information provided by the motion capture
system. An external calibration of the device is used to com-
pute gCG . We compute gCD the homogeneous representation
of the change of the coordinates from the drone frame to the
camera frame as

gCD = gCGgGWgWD = gCGg−1WGgWD (1)

B. Hardware and Software Setup

We use the camera and Inertial Measurement Unit (IMU)
data available on the headset. The IMU rate is 160 Hz, whereas
the image data is 25 Hz. A drone detector is responsible to
output bounding boxes of the drones’ locations in the image
space along with their confidence levels. We use a custom
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Fig. 3: 3D drone bounding box defined in the D frame.

small–scale drone from our previous work [3] for testing
purposes. Once the drone is detected, the object tracker module
is responsible for detecting and tracking each swarm agent in
space and time and consequently associating a unique ID to
each drone. The 6-DoF pose estimator computes the relative
position and orientation of detected drones with respect to the
user. The tracking and the pose data provide the state of the
swarm agents and can potentially be employed for interaction.
Our approach does not use any external localization system
(e.g., GNSS, Motion Capture System) except during the detec-
tor’s training phase. Importantly, our system is also lightweight
and does not require a ground station since the algorithms
can run on an Nvidia Jetson TX2 module. A Vicon1 motion
capture system is used only to capture ground truth data during
our experiments and as an instrument to facilitate the creation
of labeled datasets for the training of the drone detector and
the semantic keypoints estimator (6-DoF pose estimator), as
explained in Section III. Our algorithms are implemented in
ROS using C++ and Python.

III. METHODOLOGY

In this section, we provide an overview of the hardware and
software components of our system.

A. Automatic Dataset Generator

In order to detect the swarming drones in the headset camera
stream, we employ the YOLOv3 algorithm [22]. This approach
identifies each agent by defining a bounding box around it in
the camera image plane. This is a supervised learning approach
with a major drawback, namely the requirement of a large
amount of training data to detect the agents accurately. The
data is usually generated by a person who manually selects
the areas of interest in the image. In this work, we design
a procedure that automatically labels data to train both the
object detector and the semantic 6-DoF estimator based on
semantic keypoints. The latter uses a double-stacked hourglass
network (see Section III-C). Our training procedure leverages
a Vicon motion capture system to generate accurate ground-
truth data as visualized in Fig. 3. It starts by first creating a 3D
bounding box around the drone. Subsequently, we express its

1www.vicon.com

Algorithm 1 JPDAF pipeline

1: Prediction Step: At every iteration, each track computes
its predicted state (Kalman filter prediction step)

2: Update Step: Each track in the state is updated according
to the following modified Kalman filter update steps
• The algorithm builds the association matrix to pair

the measurements with the feasible tracks
• The association matrix is used to build the hypothesis

matrices to identify the measurements/tracks one-
to-one combinations. Each matrix corresponds to a
feasible joint event of the measurements’ process

• A probability of occurrence is then computed for each
joint event

• The algorithm computes the weights corresponding to
the influence of each measurement on each track

8 edges as coordinates in the drone frame D, and we project
them on the camera image plane of the glasses by tracking the
drone’s and glasses’ positions via motion capture system. The
projections can then build a 2D bounding box directly used for
the object detector training process or as semantic keypoints
for the semantic keypoints stacked hourglass network training
employed for pose estimation.

B. Multi-Agent Tracking

Once the swarm’s agents have been detected, the main goal
is to track each agent in space and time. All the objects
(drones) being undifferentiable, the tracker’s role is to attribute
a different ID to each of the detected drones, and track the
swarm along the stream of images. To achieve this goal, once
a unique ID is assigned to each vehicle, it is necessary to
associate the incoming measurements to the robots’ tracks. We
propose to achieve this goal by using a Joint Probabilistic Data
Association Filter (JPDAF) [23], [24], [25] (see Algorithm 1).

1) Prediction Step: Each detected object is tracked employ-
ing a 4-dimensional vector, containing the track positions and
velocities along the u and v axes of the image plane

xk =
[
pu ṗu pv ṗv

]>
. (2)

At each algorithm iteration, each track motion is driven by a
modified Kalman filter with a constant speed motion model

xk+1 = Akxk + Bkuk + Qk, (3)

where Ak, Bk are the state transition and control input models
respectively, and Qk the process noise covariance matrix

Ak =


1 δt 0 0
0 1 0 0
0 0 1 δt
0 0 0 1

 , Qk = q


δt2

2 0 0 0
0 δt 0 0

0 0 δt2

2 0
0 0 0 δt

 ,

Bk = δt


(u−cu)(v−cv)

f − (u−cu)2
f − f v − cv

0 0 0

f + (v−cv)2
f − (u−cu)(v−cv)

f −u+ cu
0 0 0

 ,
(4)
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where δt is the sampling time in s, q is the acceleration of the
drones in px/s2 assumed to be a Gaussian random variable,
(cu, cv) are the principal point coordinates, f is the focal
length, and uk = Bkωcam with ωcam the camera angular
velocity obtained using gyro data. The model in eq. (3) is
obtained by combining a constant speed motion model in the
image plane with optical flow motion field equations. This
strategy allows us to compensate for camera 3D rotations
using IMU gyro data, while considering a constant velocity
model in the image plane for each agent. Taking into account
camera rotations in our model makes the tracking more robust
(see Section IV). Specifically, let us consider a camera frame
moving with respect to an inertial frame with linear and
angular velocities respectively v =

[
vx vy vz

]>
and ωcam.

The velocity of a 3D point pc = (X,Y, Z) expressed in the
camera frame is

ṗc(t) = −ωcam × pc(t)− v. (5)

Considering the camera projective equations

pu = f
X

Z
+ cu, pv = f

Y

Z
+ cv, (6)

we compute their time derivative and we plug eq. (5) in it and
take the rotational component of the resulting expression. This
provides the Bkuk term in eq. (3).

2) Update Step: The detector provides bounding boxes
around recognized objects on each frame, without any specific
association between current and past detections. Therefore,
it is necessary to solve the association problem between
measurements and the corresponding track in the state. The
observation model is the bounding box centroid position

zk =

[
pu
pv

]
= Ckxk + η, (7)

and η is assumed to be Gaussian white noise η ∼ N (0,R).
The update of the tracks’ state is done across all tracks and all
detections in a joint manner. We define the innovation vector
yik as the innovation of one track by the measurement zik

yik = zik − Ckµk (8)

where µk is the predicted state mean. We define βik as the
weight of the influence of the measurement i on the track
t, corresponding to the probability that the measurement i
was generated by the track t. Furthermore, we define β0

k

as the probability that no measurement has been generated
by the track t. For each track, these coefficients respect the
probability equation

mk∑
i=1

βik + β0
k = 1. (9)

where mk is the number of measurements (detections). The
combined innovation vector yk for a track is computed as

yk =

mk∑
i=1

βikyik, (10)

and the state xk is updated according to

xk ← xk + Kkyk. (11)

The predicted state covariance Pk is updated accoding to

Pk ← β0
kPk + (1− βik)Pck + P̃k, (12)

where
Pck = Pk,k−1 −KkSkK>k , (13)

with Sk = CPk,k-1CT + R the innovation covariance, Pk,k−1
the predicted covariance, Pck is the covariance of the state
updated with the correct measurement, and P̃k is the updated
covariance due to the uncertainty of the association

P̃k = Kk

(
mk∑
i=1

βikyikyik
> − yky>k

)
K>k . (14)

To compute the update weights βik, we first build the associ-
ation matrix I, representing the possible associations between
the measurements and the tracks. Each row corresponds to a
measurement, and each column to a track. The first column
corresponds to clutter noise generated detections. If an element
ai,j of the association matrix I is equal to 0, the measurement
i is not associated to source j (track or clutter noise). Instead,
if ai,j = 1, then they are associated. The elements of the
association matrix are 1 if the following gating condition is
verified

V (k, γ) := {zik : (zik−Ckxk)>S−1k (zik−Ckxk) ≤ σ2}. (15)

Finally, the algorithm performs track management (i.e., it
creates new tracks if needed, gives IDs to confirmed tracks,
and deletes deprecated tracks). Once the association matrix is
built, the hypothesis matrices are generated Î (χ). Each joint
event χi is represented by a hypothesis matrix Îi = [υ̂jt(χ)].
A joint event is defined as

χ =
⋂
j∈M

χj,tj , (16)

where χj,tj is the event that the measurement j originated
from target tj, 0 ≤ tj ≤ T , and tj is the index of the target
to which the measurement j is associated. In the JPDAF, the
probabilities of joint events indicate if each measurement is
either associated to one target, or to the clutter noise, and
only feasible events are used. A feasible joint event in this
particular case is an event where no target has more than one
measurement associated to it

j 6= l and tj > 0 implies tj 6= tl, (17)

where each measurement is associated to either one target or to
clutter noise. In a hypothesis matrix, an element ai,j equal to 0
means that the measurement i was not generated by the target
j, and an element ai,j equal to 1 means that the measurement i
was generated by the target j, within this particular joint event.
The feasibility condition constraints impose the corresponding
hypothesis matrix to have at most one element equal to 1
per column (with the first column as exception to this rule),
and that each row has exactly one element equal to 1 (each
measurement was generated by one source, and a target can
generate at most one measurement). The hypothesis matrices
generation is a combinatorial problem under the feasibility
constraint. The gating step previously mentioned limits the
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Example 3.1: Let us take the following association matrix

I =

[
1 1 0 0
1 1 1 0

]
This matrix would generate the following hypothesis matrices

Î(χ1) =

[
1 0 0 0
1 0 0 0

]
, Î(χ2) =

[
0 1 0 0
1 0 0 0

]
,

Î(χ3) =

[
1 0 0 0
0 1 0 0

]
, Î(χ4) =

[
1 0 0 0
0 0 1 0

]
,

Î(χ5) =

[
0 1 0 0
0 0 1 0

]
.

number of joint events to consider, which otherwise grows
exponentially with the number of tracks and measurements.
A sample of this process is provided in Ex. 3.1 for two
measurements and three tracks.

After generating the hypothesis matrices corresponding to
the joint events, we compute the probability of each joint event
to be the one that occurred in reality. We define two indicators
• The measurement association indicator denotes whether

measurement j is associated with any track in the joint
event χ

τt(χ) :=

{
1, if tj > 0

0, if tj = 0
(18)

• The target association indicates whether any measurement
is associated with the target t in the joint event χ

δt(χ) :=

{
1, if tj = t for some j
0, if tj 6= t for all j

(19)

The number of false positive measurements (generated by
clutter noise) are modeled according to a Poisson distribution
with rate λ = CV , where V is the volume of the observed
space (the image area in our case) and C the density of
false measurements. A measurement (detection) generated by
a target is modeled by a k-dimensional normal distribution (in
our case k = 2). At each time step, each target may or may not
be detected. The target detection probability is denoted with
PD. Using these assumptions,the probability corresponding to
each hypothesis matrix can now be computed as

P{χ|Yk} =
Cφ

c

∏
t:τj=1

e
− 1

2 y
tj
j S−1

tj
y
tj
j

(2π)
M
2 |Stj |

1
2

·
∏
t:δt=1

P tD
∏
t:δt=0

(1−P tD).

(20)
with φ is the number of false measurements in a joint event
and c a normalization constant. A similar derivation leading to
the presented results can be found in [23], [24]. The constant

(a) (b) (c) (d)
Fig. 4: Pose estimation steps using semantic keypoints. (a)
Input image: cropped detected object (b) Predicted heatmaps
for each keypoint shown in Fig. 3, (c) Weak perspective
estimated pose, and (d) Full perspective one.

c is unknown, so first we compute the probability of each
joint event to be the correct one (using the same c for all
probabilities, for example c = 1). Then the probabilities need
to be normalized such that∑

allχ

P{χ|Yk} = 1. (21)

The weights βjt and β0
t , corresponding to the probability that

the track t generated the measurement j or that the track t
generated no measurement respectively, can now be computed.
The influence of the measurement j on the track t is the sum
of probabilities of all joint events where the measurement j
was generated by the track t, i.e.

βjt =
∑
allχ

P{χ|Yk} · υ̂jt(χ), β0
t = 1−

m∑
j=1

βjt . (22)

We can define a matrix B, having the same shape as the associ-
ation matrix, containing all the weights for each measurement
and each track, the columns being the tracks and the rows
being the measurements. B can be computed as

B =


α1 β1

1 . . . β1
T

α2 β2
1 . . . β2

T
...

...
. . .

...
αm β2

1 . . . βmT

 =
∑

all eventsχj

P{χj |Y k} · Î(χj).

(23)
We break this matrix into weights βjt by selecting one column
for each track, and by computing the resulting β0

t weight.

C. 6-DoF Pose Estimator

To estimate each drone’s 6-DoF pose in 3D space, we
leverage the approach presented in [26]. Unlike other ap-
proaches [27], [28] where the network is trained on the full
image, we train our network only on semantic keypoints
corresponding to the four propellers and four landing gears
of the drone. Training on semantic keypoints instead of the
full image provides increased robustness to changes in the
drone’s appearance (e.g., due to a change or reorganization
of the hardware or partial occlusions). The algorithm directly
employs semantic keypoints to perform object pose estimation.
To further speed up this process, we apply the algorithm on
the image region (bounding box area) containing the object
obtained using the detector and tracker previously described.
We train the hourglass network [29] on the semantic keypoints
corresponding to the drone’s four propellers and four landing
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Fig. 5: Snapshots of the JPDAF tracking three quadrotors at two time instants. The pink crosses represent the measurement
(detection), the bold green circles show the tracks positions (with their corresponding ID), and the thin green ellipsoids around
each track show the position covariance in the image space.
gears. The pose estimation process (see Fig. 4) is performed
in several steps

1) The neural network takes as input the image cropped
around the detected drone (Fig. 4a).

2) A neural network (double-stacked hourglass network)
predicts a heatmap of positioning for each semantic
keypoint (Fig. 4b).

3) Using the predicted positions of each semantic keypoint,
the algorithm computes the object’s pose using an opti-
mization approach (gradient-based method) (Fig. 4c-d).

Specifically, the pose optimization uses the model of the
drone’s semantic keypoints in 3D. The uncertainty of the
keypoints during the prediction (in 2D) is incorporated to give
a relaxation for the errors and noise. The pose optimization
is conducted starting by a weak perspective pose estimation
(Fig. 4c) and followed by a full perspective pose estimation
(Fig. 4d). The weak perspective optimization estimates only
the 2 first rows of the rotation matrix and of the translation
vector. Therefore, we do not assess any depth information.
The full perspective algorithm employs the intrinsic camera
parameters instead. It is initialized using the weak perspective
pose estimation solution to better condition the nonlinear
optimization, and it estimates the full rotation and translation
matrix to the drone frame in the camera frame.

IV. EXPERIMENTAL RESULTS

In this section, we report results from experiments con-
ducted in an indoor arena with a flying space of 7× 5× 4 m3

at the Agile Robotics and Perception Lab (ARPL) lab at New
York University. We conduct the experiments with 3 quadro-
tors. The rate limit is set by the object detector (YOLOv3),
which runs at 30 Hz on a common laptop and at 5 Hz
on the Nvidia Jetson TX2 platform. From a computational
point of view the JPDAF approach grows exponentially with
the number of agents, but the gating process described in
Section IV-A helps to reduce this issue.

A. Multi-agent tracker

In Fig. 5, we present qualitative results of the multi-agent
tracker at different time instants. The multimedia material of
this paper shows results from extensive experiments in multi-
ple conditions that further show the successful performance of
the proposed approach. We quantitatively assess our approach
in 3 experiments, as described below.

1) Multi-agent tracker: filtering experiment: It is well
known that computer vision algorithms suffer under fast
camera rotations, which increase image blur [30]. Typically,
fast rotation effects cause degradation in the performance of

Fig. 6: Density of ‖ωcam‖2 in the dataset.

the detector. Therefore, we present an experiment to show
that (a) the JPDAF filters out false negatives (undetected
objects) produced by the detector, and (b) we quantify the
dependence of this aspect on the angular speed of the glasses.
In this experiment, we use a dataset of 28 minutes and 58
seconds. The headset’s camera is pointing towards a scene that
contains three drones in flight. The drones are autonomously
controlled [3]. The user wearing the glasses with the cam-
era is either remaining still, or moving his head (rotational
movements) with varying angular speed ωcam. We consider
that k detections have disappeared from a frame Fi−1 to a
frame Fi if the number of detections drops across the two
frames. After running the tracker on the whole dataset, we
analyze the influence of the angular speed norm ‖ωcam‖2
on the detections and track disappearances. To avoid bias or
oversampling in our sample distribution of angular velocities
(some datasets might have predominantly low values or high
values of angular velocities) as shown in Fig. 6, we normalized
the disappearances with respect to the density of ‖ωcam‖2.

The Normalized Detection Disappearances (NDD) and Nor-
malized Tracks Disappearances (NTD) are shown in Fig. 7.

In Fig. 7a, we notice the negative impact of the angular
speed of the glasses on the detection quality, especially in
the ‖ωcam‖2 ∈ [0; 1.33] rad/s interval. For higher values
of ‖ωcam‖2 the detection disappearances remain stagnant. If
we compare Fig. 7a and 7b, we see the filtering effect of
the tracker. The remaining track disappearances are due to
scenarios where a drone is not detected for more than a given
number of consecutive updates, after which they are deleted.
This event typically happens when the background behind the

(a) (b)
Fig. 7: (a) NDD and (b) NTD as a function of ‖ωcam‖2.

Authorized licensed use limited to: US Army Research Laboratory. Downloaded on January 16,2021 at 16:32:34 UTC from IEEE Xplore.  Restrictions apply. 



2377-3766 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2021.3051565, IEEE Robotics
and Automation Letters

PAVLIV et al.: TRACKING AND RELATIVE LOCALIZATION OF DRONE SWARMS WITH A VISION-BASED HEADSET 7

(a) (b)
Fig. 8: NTL without (a) and with (b) user motions’ compen-
sation as a function of ‖ωcam‖2.

drone is ambiguous or makes the drone invisible in the image
(for the detector and for humans as well). Overall, it is clear
that this filtering approach is useful to estimate the drones’
positions when the movement of the camera observing the
scene causes the detector to fail.

2) Multi-agent tracker: control-input model experiment:
The goal of this experiment is to show the importance of the
head motion compensation procedure designed as control input
in our filter prediction model in eq. (3). We show that the
proposed approach explicitly takes into account head motion
to improve the tracking performance. When a measurement
falls too far from its track, it is not associated to the track
anymore (the corresponding βjt weight is too small). When
no track is associated to a measurement, a new track will
be created for this measurement. The new track will get the
whole update weight of the measurement (since it is created
based on the measurement), and the old track will then be
deleted; we call this a tracking loss. We can assess that k
tracking losses occurred when, in addition to 3 tracks with
IDs, k tracks with no IDs are created. We use a pool of IDs
such that additional agents can be added at any time. A track
is deleted once a given number of iterations with no more
measurements associated with it elapsed and the covariance
becomes large. Considering a pre-defined number of agents,
the IDs do not get switched between the tracks if only one
is lost at a time (see supplementary video material) since the
re-detected track obtains the past ID. If several tracks are lost
simultaneously, the IDs are redistributed in a random manner.

Using the definition of tracking loss, we run the tracker
on the same dataset used in our previous experiment (sec-
tion IV-A1). We analyze the influence of ‖ωcam‖2 on the
tracking losses, and compare results without (Fig. 8a) or with
(Fig. 8b) compensation for head movements. Similar to the
previous experiment, we normalize the tracking losses with
respect to the density of ‖ωcam‖2. The Normalized Tracking
Losses (NTL), indicating lost and re-assigned tracks (NTD
denotes disappeared tracks instead), of the tracker running
without compensation (Fig. 8a) show that the performance of
the tracker decreases with angular camera motions. Although
the histogram’s evolution is not smooth, the growing tendency
is still visible. The lack of consistency is probably due to
the sparseness of the dataset. There is also another backlash
phenomenon explaining the lack of smoothness of the curve:
at higher angular speeds, we noticed that several tracks were
already lost in previous frames, when the angular speed was
lower. Conversely, Fig. 8b shows how the incorporation of

the angular speed in our motion model can improve the
performance of the tracker. After taking it into account,
the tracking was lost only once, at an angular speed norm
‖ωcam‖2 = 0.3966 rad/s. However, a manual check showed
that this tracking loss is due to a synchronization issue of the
IMU with the image data caused by the inability of the device
to allow hardware synchronization among the sensors.

3) Multi-agent tracker: robustness to occlusions: As pre-
viously mentioned, each drone is associated with a different
track. Each track is made of four variables (two corresponding
to the drone position in the image plane and two corresponding
to its velocity in the image plane). Based on this 4-dimensional
state, it is possible to predict each track’s position in the next
time step using our motion model in eq. (3). This aspect is
useful when the drone passes in front of a cluttered background
as well as when it is not detected for several frames or the 3D
paths of different drones cause an overlap of the tracks in the
image. In this experiment, we show robustness to occlusions.
Specifically, we verify that our approach is able to resolve
an ambiguous tracking situation when a drone, and the cor-
responding track, crosses another drone’s track or path in the
image frame. To test the robustness of the developed tracker in
this scenario, we put together the following experiment. The
glasses lie on a fixed support and a drone moves relative to the
other two drones. The motion of the third drone crosses the
hovering drones horizontally or vertically on the image plane.
During the experiment, we record the following metrics: the
distance between the tracks at crossing time in px; the speed
of the moving drone in px/s; and the success or failure of the
crossing. We expect bigger distances and velocities during the
crossing to lead to higher chances of correct IDs re-attribution
as shown in Table I, where we report the mean of the distance
between the tracks and the Standard Deviation (STD).

Distance at crossing [px] Speed at crossing [px/s]
Mean 4.88 268.01
STD 4.77 71.07

TABLE I: Summary of the robustness to occlusions experi-
ment for the multi-agent tracker (section IV-A3). The dataset
has the following properties: total number of crossings = 101;
correct ID reattributions = 98; wrong ID reattributions = 3.

The experiments present many cases of full occlusions of
the bounding boxes associated to the drones (distance between
the drones’ bounding boxes centroids equal to 0 px). These
cases show that the overlapping area between the bounding
boxes is not a limiting factor to correctly re-attribute the IDs.

B. 6-DoF pose estimator: performance experiment

Finally, we provide qualitative and quantitative results of
the 6-DoF pose estimation algorithm. To quantitatively eval-
uate the pose estimator performance, we create a semantic
keypoints dataset with the method described in Section III-A
(the dataset contains 19265 frames of which 13487 are used for
training and 5778 for testing). We train the stacked hourglass
network, and then estimate the poses of the drones in the
testing dataset. Table II summarizes this experiment setup and
results. We compare the estimated poses with the ground truth
pose, available from the Vicon motion capture system. On the
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Rotation error [◦] Translation error [m]
Mean 1.1263 0.0190
STD 1.4504 0.0166

TABLE II: Summary of the 6-DoF pose estimator performance
experiment. The dataset contains 5778 testing samples.

testing dataset, we measure the translation error as well as the
rotation error among R1 and R2 using the geodesic distance

et = ||t1 − t2||2, eR =
|| logSO(3)

(
R>1 R2

)
||F√

2
. (24)

The results show a centimeter-level precision for position
estimation and 1–2 degrees for the rotational part.

V. CONCLUSION

In this work, we presented an approach to detect, localize,
and track a set of drones from a moving human’s perspective
using a headset with an embedded camera and IMU. The
proposed approach works in real time, is capable of tracking
the robots in space and time, and can also be leveraged in other
scenarios that do not have external positioning systems, such
as swarms of terrestrial robots or adapted to solve humans’
pose estimation problems. It can be potentially employed
on any camera/IMU system, including the one available on
small drones for formation control. The presented framework
incorporates a 6–DoF drone pose estimator based on semantic
keypoints prediction and pose optimization. We also presented
an automated approach to create labeled datasets for the
training of the object detector and of the semantic keypoints
neural network leveraging the motion capture system data.

Our results show the effectiveness of the proposed approach
and can be employed in multiple domains including virtual and
augmented reality, human–robot interaction, and multi-robots
formation control.

Future work will investigate how to extend the approach
to reach an association consensus among the tracked objects
in the different camera/IMU systems. We would also like to
study how to leverage the tracking data across frames to further
increase the accuracy of the pose estimation network and speed
up its convergence time or reduce the network size.
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