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Abstract— This paper presents an approach that enables a
mobile “Interceptor” robot to intercept targets in an indoo r
environment using information from a distributed acoustic sensor
network. The approach assumes the indoor environment has been
previously mapped and that the sensor nodes know their position
in the map. The targets are localized in the sensor network
based upon local maxima of the acoustic volume. The current
target localization information is reported to an Interceptor
robot, which utilizes a dual wavefront path planner to move
from its current location to a location that is within visibi lity
range of a target. Results of the complete implementation ofthis
approach using 70 sensor net robots in the Player/Stage multi-
robot simulator are reported, as well as implementation results
to date on a team of physical robots. To our knowledge, this is
the first implementation of a multi-robot system that combines
the use of an acoustic sensor net for target detection with an
Interceptor robot that can efficiently reach the moving position
of the detected target in indoor environments.

I. I NTRODUCTION

In many security, surveillance, and reconnaissance applica-
tions, an indoor area must be monitored for unusual activity.
For example, in warehouse applications, a sensor network
could be utilized to detect unexpected motion, which could
then trigger a call to a more capable mobile response robot, or
Interceptor. The Interceptor robot would typically have more
sophisticated sensors that allow it to move to the location of
the target and then transmit images or other relevant data back
to the human monitor.

In this paper, we describe an approach enabling an Inter-
ceptor robot to use information from a distributed acoustic
sensor network to intercept a target in an area of interest. The
distributed acoustic sensor network we use in this researchis
very simple, involving only a single low-fidelity microphone
at each sensor node. In our current work, we assume that the
only sounds in the environment are those from the target that
moves through the environment. The sensor nodes are able to
communicate with each other and with the Interceptor robot.
We assume that the environment has been previously mapped
by other robot team members using a technique such as [1],
and that the sensor nodes know where they are in the map.
We also assume that the Interceptor robot has a vision system
onboard that enables it to visually detect and track the target
once it is within visual range. This paper describes (1) how the
distributed acoustic sensor network determines an estimation
of the target location, and (2) how an Interceptor robot uses
this information to dynamically replan and execute a path to
move within visibility range of the target.

In Section II, we describe research related to this project.
Section III then discusses the technique used by the sensor
net to localize the acoustic target. In Section IV, we describe
the dual wavefront path planning technique we use to enable
the Interceptor to move within visibility range of the target.
Section V describes our results from implementation of this
approach in simulation and on a team of physical robots. We
conclude with some summary remarks in Section VI.

II. RELATED WORK

In recent years, an extensive amount of research has in-
vestigated the topic of sensor networks for acoustic target
localization. The types of acoustic sensors vary – some of
the sensors are able to detect the distance to an acoustic
target (e.g., [2]), while others can detect the direction toan
acoustic target (e.g., [3], [4]), and still others assume only
acoustic volume is detectable (e.g., [5]). Some techniques
(e.g., [2]) involve the use of a known strength of signal at
the source in order to estimate the distances to the target and
combine them in real time. The approach in [6] assumes a
time synchronized microphone array and uses time difference
of arrival between microphones and microphone arrays to
localize targets. In all of these cases, the sensor net integrates
the detected information to localize the target.

In our application, each sensor node has only one low-
fidelity microphone. Thus, individual acoustic sensors areonly
able to detect volume; the distance and direction to the target
cannot be detected. Our real world constraints also prevent
us from using a known energy output level from the target,
both because of practical issues of varying sound levels at
the source and declining microphone sensitivity as battery
power declines. Sophisticated algorithms for target localization
under these constraints have been developed in [5], which uses
mathematical analysis to estimate the target position based
upon the strengths of the signals heard by neighboring nodes.
However, these analytical models were designed for open-
air environments where acoustic signal propagation models
are known. Unfortunately, there exist no known models for
acoustic propagation in indoor environments; thus we are not
currently able to take advantage of these precise analytical
methods. As [5] notes, the complexity of the more sophisti-
cated algorithms is justified only if their accuracy is higher
than the node spacing itself. Since this will likely not be the
case in our application, we make the same conclusion as [5]
that a reasonable approximation to target localization is the



location of the node hearing the highest volume. In the case
of multiple targets, the local maxima of volumes heard will
be the locations of multiple targets, within the resolutionof
the sensor node placements.

Likewise, a significant amount of research has addressed the
issue of moving target interception. Techniques for enabling a
mobile robot to intercept a moving target have been developed
in a wide range of application domains. These strategies
typically depend on an ability to predict the path of the target
over time. However, unlike bouncing balls or ballistic missile
motions, it is generally quite difficult to predict the motions
of a human target moving through an indoor environment
unless prior models have been developed over time that track
the typical behavior patterns of humans in the environment.
Since this modeling is not relevant to our application, it is
not meaningful to try to predict a target’s future path. Our
approach, therefore, is to plan a path to the current estimation
of the target position, and then dynamically replan the pathas
the target position changes.

While an extensive number of path planning techniques are
possible, we use a dual wavefront propagation algorithm to
plan a path to the target position. Several variations of the
wavefront propagation algorithm have been implemented, such
as Murphy’s Trulla system [7]. Our approach is similar to the
work of Behring,et al. [8]. However, we make modifications
to the Behring algorithm, which are described in section IV.

We are not aware of any other previous work that has
combined the use of a distributed acoustic sensor network for
target localization with an Interceptor robot that is able to
efficiently move to the estimated target location in an indoor
environment.

III. D ISTRIBUTED ACOUSTIC SENSORNET TARGET

DETECTION

In our research, the acoustic sensor nodes are simple
AmigoBot robots that use an iPAQ computer for computations,
along with wireless communications capabilities. The iPAQ
computer has an installed simple microphone that is used for
acoustic sensing. In our larger research project, we address the
issue of sensor net deployment of these simple robots using
heterogeneous herding techniques (see our companion paper
[9] for details). For this paper, we assume that a map of the
environment has been previously built by robot team members
(e.g., using a technique such as [1]), and that the acoustic
sensor nodes have been deployed to known positions within
the map.

Once the acoustic sensor robots have been deployed, they
activate their distributed acoustic sensor net to detect targets
that are moving through the environment. Since our robots
are currently equipped with only a very simple microphone,
we assume that the target moving through the environment
is making some detectable noise, and that the target is the
only source of sound. As illustrated in Figure 1, after initially
filtering the volume information, our approach has each robot
reporting its volume heard to its local neighbors (indicated
by the edges in the figure). Because of noisy data generated

Fig. 1. Illustration of how the distributed acoustic sensornet operates. The
small circles represent sensor node positions. The edges represent nearby
neighbor communications paths. The numbers represent the volume heard at
that node. The circled sensor nodes are the local maxima, determined via
communications with neighboring nodes.

by our simple microphones, merely reporting the location
of the highest raw volume heard is not sufficient to define
the target’s current position. We therefore define aqualifying
ratio, which gives the fraction of time a sensor node must
hear the highest volume (relative to its immediate neighbors)
during the most recent predefined (short) time interval. If
the robot’s volume heard over the time interval exceeds the
qualifying ratio, it reports its position as the current target
position estimate. If there is more than a single sensor robot
that exceeds the qualifying ratio (as is sometimes the case
when the ratio is less than 0.5), then all such robots will report
their positions. If multiple targets are in the environment, all
the target locations in the sensor network are reported. If there
is a tie in the detected maximum volumes of two neighbors,
then both report their positions. If the target is moving, these
ties will be broken very quickly. In Figure 1, the numbers
at each sensor node indicate the volume heard at that node.
In this figure, two nodes detect local maxima of the sensor
network, corresponding to two targets. These two nodes are
the only nodes whose volume heard is higher than all of
their neighbors. The pseudocode for this distributed acoustic
detection algorithm is shown in Table I.

IV. D UAL WAVEFRONT PATH PLANNING FOR TARGET

INTERCEPT

Like the integration of the Trulla path planner into a reactive
architecture described in [5], our target intercept algorithm can
also be thought of as being composed of a deliberative com-
ponent (path planning) and a reactive component (navigation
along the path to the target while avoiding obstacles). Since the
essence of the intercept function is being able to quickly react
to changes in the target position, we wanted a path planner
with execution times that would not hamper the operation of
the reactive component of the algorithm. Our empirical results
show that the dual wavefront path planner approach described
here is capable of meeting this requirement.



TABLE I

THE DISTRIBUTED ACOUSTICSENSINGALGORITHM.

Distributed Acoustic Sensing Algorithm
While (forever)� Filter sound – For each sound instant:

– Subtract out all noise below a predefined volume;
– Use only sound data within specified frequency

range;
– Average sounds over a short period (approx. 1/3

second)� Communicate my filtered sound (
�
) to my nearest neigh-

bors;� Receive� ������ volumes from my� nearest neighbors;� Update fraction of highest volume heard for most recent
time interval. (i.e., if

� � � �	� for all
	
, then fraction

increases; else, it decreases.)� If my fraction of highest volume heard
�

qualifying ratio,
– Broadcast to the Interceptor robot my position,
 ,

as nearest to the detected target.

Our approach to path planning takes as input a map gener-
ated by mapping robots and uses dual-wavefront propagation
in an 8-connected occupancy grid to generate an optimal path
from the starting position to the goal position. This path
consists of a series of waypoints that the robot should travel
through. Beginning with the initial occupancy grid, obstacles
are expanded to enable the generation of paths that keep
robots away from potential collisions. This algorithm then
propagates wavefronts from both the starting position and
the goal position until the wavefronts meet. A path is then
extracted from these wavefronts that minimizes the Euclidean
distance between the starting and goal positions. This path,
which is a series of waypoints, is then smoothed to eliminate
unneeded waypoints and jagged path edges. The result is a
series of waypoints that take the robot from the starting to the
goal position.

Our approach is similar to the work of Behring,et al.
[8]. However, we make two modifications to the Behring
algorithm. First, instead of propagating a single wavefront
from the starting position, we implement dual wavefront
propagation from the starting and goal positions, which is
much more computationally efficient.

Second, instead of associating the cells on the wavefront
boundary with the current number of iterations, we associate
these cells with the Euclidian distance that has accumulated as
the wave has propagated outward through neighboring cells.
In other words, after� iterations, cells on the wavefront
boundary can take on values ranging from� (no diagonal
travel) to�� (all diagonal travel). When the wavefronts meet,
the two neighboring cells on opposite sides of the boundary
with the smallest combined distance from the initial and goal
positions are placed on the path. From these points, a path
is constructed first back to the initial position, then onward
to the goal position, by adding to the path in iterative steps
the neighboring cell having the smallest accumulated distance.

TABLE II

THE DUAL WAVEFRONT PATH PLANNER.

Dual Wavefront Path Planner �� �� � � �� ������� � � �� ������� � � �
1) Convert map� to occupancy grid.
2) Expand obstacles.
3) Simultaneously propagate wavefronts from Start (�) and

Goal (
 ) points as follows:
While (not finished propagating)� Propagate wave from�, marking adjacent grid cells

with the minimum Euclidian distance from� to the
centers of these cells;� Propagate wave from
 marking adjacent grid cells
with the minimum Euclidian distance from
 to the
centers of these cells;� If two wavefronts meet, we have finished propagat-
ing.

4) Extract path,� , in two phases: a) from wavefront
meeting point back to�, and b) from wavefront meeting
point onwards to
 , as follows (execute twice, using
temporary variable�, where� = � then � = 
 ):� Select the two neighboring cells on opposite sides

of the wavefronts’ boundary which have the lowest
combined marked Euclidian distance;� Place the center points of these two cells on the
path;� While (not extracted back to�)
– Select adjacent grid cell with the minimum

marked Euclidian distance;
– Add the center of this grid cell as a waypoint in

the path;
– If this grid cell contains� , the extraction is

complete.� Return planned path� , which is a series of way-
points.

5) Smooth path,� , as follows:� Remove all waypoints from� that are colinear with
their adjacent waypoints.� Remove any waypoint

	
from � such that the line

between waypoints
	  � and

	 ! � does not
intersect with an obstacle. Iterate until no remaining
waypoints can be removed without causing path to
intersect with an obstacle.� Return smoothed path� , which is a reduced series
of waypoints.

Our second modification has thus enabled us to ensure that the
extracted path will always be a shortest path. The pseudocode
for this algorithm is shown in Table II.

Once the distributed acoustic sensor net has detected ap-
proximate target positions, this position information is sent
to the Interceptor robots. The appropriate algorithm for target
interception depends upon the resolution of the current target
position calculation. In the case we have outlined in this paper,
the resolution is very coarse, in which the target position
is determined only to the nearest sensor net robot position.
With this coarse information, it is not possible to estimatethe
current trajectory of the target; instead, the informationhas
to be combined with map reachability constraints to estimate
a possible target trajectory. Future research may explore this



TABLE III

THE TARGET INTERCEPTALGORITHM.

The Target Intercept Algorithm�� �� � � �� Repeat until done:
– 
 = Target position from Acoustic Sensor Net.
– � = Interceptor position from Localizer.
– � = Path from DualWavefrontPathPlanner(� ,�,
 )
– distanceto target =� = PathLength (� )
– If (distanceto target� visual range), exit loop.
– distancetraveled = 0
– While (distancetraveled� ���)� Move along path�� � = Interceptor position from Localizer.� Update distancetraveled� Transfer to visual target tracking.

possibility.
The algorithm for target intercept, outlined in Table III,

involves continually replanning and executing a path to the
current detected location of the target using the dual-wavefront
propagation algorithm. We assume the Interceptor robot hasa
Localizer module (e.g., [1]) that enables it to localize itself
in the environment. Once the Interceptor has moved halfway
along its planned path, it replans to take advantage of better
solutions that may be possible due to target motion.

Once the Interceptor robot is within a pre-defined distance
from the target, the Interceptor robot activates a visual search
behavior to search for the target, which we call “visual
tracking” mode. Once the target has been detected visually,
the Interceptor robot uses a vision-based tracking algorithm to
keep the target within view. If the target is lost, the Interceptor
robot again obtains information from the distributed acoustic
sensor network on the approximate detected position of the
target, repeating the process. In this case, the dual wavefront
path planner would again be used to move to the vicinity of the
target and repeat the attempt for visual detection and tracking.

V. RESULTS

We have implemented this approach both in simulation and
on a team of physical robots. We report here the results of
each.

A. Simulation Results

For our simulation studies, we used the Player/Stage simu-
lator [10] using 70 pre-positioned acoustic sensor robots in an
indoor environment. The indoor environment for these studies
was the floor plan of the decommissioned hospital at Fort Sam
Houston, in San Antonio, Texas, which as overall dimensions
of 140 meters by 53 meters. The cell size of the occupancy
grid was approximately 20 centimeters. For the example
environment reported in this paper, obstacles are expanded
in the grid representation by approximately 20 centimetersto
enable generation of robot paths that keep the robot team away
from obstacles. Figure 2 shows a snapshot of the distributed
acoustic sensor net from these simulation studies. In this

TABLE IV

T IMING RESULTS FROMPATH PLANNER.

Path Length (meters) Planning Time (sec)

100 22
50 10
25 4
12 2
6 1

implementation, we model volumes as falling off with the
square of the distance from the sound source. However, we
have not modeled the physics of sound propagation through
and around walls in the simulation.

We have fully implemented the dual wavefront propagation
algorithm for target intercept in Player/Stage, and it operates in
a variety of environmental maps. Figure 3 shows an example
of the flooding process of the dual wavefront path planner, as
well as the resulting smoothed path that is extracted from the
wavefront propagation process.

Figure 4 shows a simulation result of the dual wavefront
path planner applied for target intercept. In this figure, the
gray path from the left wing of the hospital, into and out of
several rooms to the central region of the building, is the actual
path taken by the target. The black path from the right wing of
the hospital to the central region is the actual path dynamically
planned and executed by the Interceptor robot in response to
the target motion. The Interceptor robot converts to a visual
tracking behavior once it is within sight of the target, in one
of the rooms near the center of the building.

To evaluate the run time capabilities of our algorithm, we
collected data on the planning time required for different
path lengths. Table IV shows the execution times of our
path planner as it plans paths of varying lengths in the Fort
Sam Houston hospital map. These times include wavefront
propagation, path extraction, and path smoothing (steps 3-
5 in Table II). Not included in these times are steps 1 and
2 in Table II, which are performed once, in preparation for
assuming the Interceptor role, and have a combined execution
time of 4 seconds for this example.

As can be seen from the table, planning time decreases
roughly linearly with decreasing path length. It is this property
that allows the path planner to replan paths in a nearly
transparent manner as the robot moves closer to the target, and
to complete the interception in what appears to be a purely
reactive way. A video of a sample run in Player/Stage of a
target moving through the distributed acoustic sensor net and
being intercepted by the Interceptor robot is available.

B. Physical Robot Results

The distributed acoustic sensor net algorithm has been
implemented on a team of AmigoBot robots, as shown in
Figure 5. These robots have an iPAQ computer onboard
running Linux. The iPAQs have a low-fidelity microphone that
we use for detecting sound. The robots communicate using
an ad hoc wireless network. The behavior software interfaces
with the robot and microphone hardware using Player. In our



Fig. 2. Deployed sensor net in Player/Stage simulator. Eachsmall robot icon (or dot, at this small image resolution) shows the position of a mobile sensor
node.

Fig. 3. Dual wavefront path planner in operation (read from left to right, from top to bottom). The robot starting position is in the right wing of the building.
The robot goal position is near the center of the building. The final figure shows the smoothed path (thin black line) extracted from the dual wavefront
propagation.

Fig. 4. Simulation results showing our approach for intercepting targets. The gray path from the left is the actual path taken by the target. The black path
from the right is the actual path dynamically planned and executed by the robot interceptor.



Fig. 5. Physical robot implementation of the acoustic sensor network on a
team of AmigoBot robots.

implementation, the robot that hears the loudest volume rotates
slightly in each direction effecting a “wiggle,” which provides
visual feedback to the experimenter as to which robot is closest
to the detected target. Using our approach, these robots are
able to determine which robot is hearing the loudest volume
and which robot is most closely tracking a target and then
report the position of that robot to a control station.

In our experiments, we have used a number of sounds
for target localization, including buzzers, walking with loud
shoes, moving while talking, and so forth. All of these sounds
are detected fairly reliably by the sensor network. Of course,
different sounds propagate differently in the indoor environ-
ment, and thus the responsiveness of the robots is somewhat
different depending on the sound characteristics. Our best
results were generated while using a buzzer operating at a high,
audible frequency and inter-robot distances around 3-5 meters
worked well for accurate localization. We have had success
with physical robot implementations of 10-15 robots and are
working to expand that number. A video of our physical robot
implementation is available.

Implementation of the Interceptor robot functions on physi-
cal robots is underway, involving the incorporation of localiza-
tion functions on an ATRV-mini robot. Once this implementa-
tion is complete, the Intercept robot function will be integrated
with the acoustic distributed sensor network.

VI. CONCLUSIONS

This paper has presented algorithms for indoor target inter-
cept using an acoustic sensor network and a dual wavefront
path planning process. Our approach involves simple sensor

nodes reporting the local maxima of detected sound as the
approximate position of a target. This information is dynami-
cally fed to an Interceptor robot, which uses a dual wavefront
path planning process to continually replan a path to intercept
the moving target. We have successfully implemented our
approach in the Player/Stage simulator and presented results of
this implementation. We have also implemented the distributed
acoustic sensor net on a team of physical robots, and have
demonstrated success in detecting the location of targets to
the resolution of the distances between sensor nodes. Work
is underway to complete the implementation of the robot
Interceptor capabilities on a physical robot, and to integrate
these capabilities with the distributed acoustic sensor network.
To our knowledge, this is the first implementation of a multi-
robot system that combines the use of an acoustic sensor
network for target detection with an Interceptor robot thatcan
efficiently reach the moving position of the detected targetin
indoor environments.
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