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Indoor Target Intercept Using an Acoustic Sensor
Network and Dual Wavefront Path Planning

Lynne E. Parker, Ben Birch, and Chris Reardon
Department of Computer Science, The University of Tenregdsaoxville, TN 37996—-3450
Email: {parker, birch, rearddr@cs.utk.edu

Abstract— This paper presents an approach that enables a In Section Il, we describe research related to this project.
mobile “Interceptor” robot to intercept targets in an indoor  Section Il then discusses the technique used by the sensor
environment using information from a distributed acoustic sensor net to localize the acoustic target. In Section 1V, we déscri

network. The approach assumes the indoor environment has lea the dual front path ol ina techni ¢ bl
previously mapped and that the sensor nodes know their posan € dual wavetront path planning technique we use 1o enable

in the map. The targets are localized in the sensor network the Interceptor to move within visibility range of the tatge
based upon local maxima of the acoustic volume. The current Section V describes our results from implementation of this
target localization information is reported to an Interceptor approach in simulation and on a team of physical robots. We

robot, which utilizes a dual wavefront path planner to move  cqneiyde with some summary remarks in Section V1.
from its current location to a location that is within visibi lity

range of a target. Results of the complete implementation dhis Il. RELATED WORK
approach using 70 sensor net robots in the Player/Stage mit ' . )
robot simulator are reported, as well as implementation reslts In recent years, an extensive amount of research has in-

to date on a team of physical robots. To our knowledge, this is vestigated the topic of sensor networks for acoustic target
the first implementation of a multi-robot system that combines localization. The types of acoustic sensors vary — some of

the use of an acoustic sensor net for target detection with an the sensors are able to detect the distance to an acoustic
Interceptor robot that can efficiently reach the moving postion

of the detected target in indoor environments. target (e.g., [2]), while others can detect the directiorato
acoustic target (e.g., [3], [4]), and still others assuméy on
l. INTRODUCTION acoustic volume is detectable (e.g., [5]). Some techniques

In many security, surveillance, and reconnaissance appli¢e.g., [2]) involve the use of a known strength of signal at
tions, an indoor area must be monitored for unusual activityie source in order to estimate the distances to the target an
For example, in warehouse applications, a sensor netwadmbine them in real time. The approach in [6] assumes a
could be utilized to detect unexpected motion, which coulime synchronized microphone array and uses time differenc
then trigger a call to a more capable mobile response robot,ad arrival between microphones and microphone arrays to
Interceptor. The Interceptor robot would typically have mordocalize targets. In all of these cases, the sensor netrates
sophisticated sensors that allow it to move to the locatibn the detected information to localize the target.
the target and then transmit images or other relevant data ba In our application, each sensor node has only one low-
to the human monitor. fidelity microphone. Thus, individual acoustic sensorsanrly

In this paper, we describe an approach enabling an Intable to detect volume; the distance and direction to theetarg
ceptor robot to use information from a distributed acoustannot be detected. Our real world constraints also prevent
sensor network to intercept a target in an area of interdémt. Tus from using a known energy output level from the target,
distributed acoustic sensor network we use in this researchoth because of practical issues of varying sound levels at
very simple, involving only a single low-fidelity microphen the source and declining microphone sensitivity as battery
at each sensor node. In our current work, we assume that plwsver declines. Sophisticated algorithms for target laatibn
only sounds in the environment are those from the target thatder these constraints have been developed in [5], whieh us
moves through the environment. The sensor nodes are ablentthematical analysis to estimate the target position base
communicate with each other and with the Interceptor robatpon the strengths of the signals heard by neighboring nodes
We assume that the environment has been previously mapptavever, these analytical models were designed for open-
by other robot team members using a technique such as Hil, environments where acoustic signal propagation models
and that the sensor nodes know where they are in the mape known. Unfortunately, there exist no known models for
We also assume that the Interceptor robot has a vision systaooustic propagation in indoor environments; thus we ate no
onboard that enables it to visually detect and track theetargurrently able to take advantage of these precise andlytica
once it is within visual range. This paper describes (1) hwsv t methods. As [5] notes, the complexity of the more sophisti-
distributed acoustic sensor network determines an estimatcated algorithms is justified only if their accuracy is highe
of the target location, and (2) how an Interceptor robot us#san the node spacing itself. Since this will likely not be th
this information to dynamically replan and execute a path t@se in our application, we make the same conclusion as [5]
move within visibility range of the target. that a reasonable approximation to target localizatiorhés t
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location of the node hearing the highest volume. In the ca

of multiple targets, the local maxima of volumes heard wi 3
be the locations of multiple targets, within the resolutimn
the sensor node placements.

Likewise, a significant amount of research has addressed
issue of moving target interception. Techniques for emajdi w
mobile robot to intercept a moving target have been develop
in a wide range of application domains. These strategi
typically depend on an ability to predict the path of the &rg
over time. However, unlike bouncing balls or ballistic nilss
motions, it is generally quite difficult to predict the mat®
of a human target moving through an indoor environme yay1ocal
unless prior models have been developed over time that tré velume heard
the typical behavior patterns of humans in the environment.

Since this modeling is not relevant to our application it iEig- 1. lllustration of how the distributed acoustic senset operates. The
! Small circles represent sensor node positions. The edgeesent nearby

not meaningful to try to predict a target's future path. OWeighbor communications paths. The numbers representibene heard at
approach, therefore, is to plan a path to the current esbmatthat node. The circled sensor nodes are the local maximarndieied via

of the target position, and then dynamically replan the path communications with neighboring nodes.
the target position changes.

While an extensive number of path planning techniques
possible, we use a dual wavefront propagation algorithm

Max local
volume heard @ 5

Infruder ©

re . : . .
abg our simple microphones, merely reporting the location

plan a path to the target position. Several variations of tI‘i1 the h|qhest raw volgme r:/?/ardh IS ?Ot S;ﬁf'.C'ent .to. define

wavefront propagation algorithm have been implementezh sd € targﬁt shcu.rrent Eosfnmn: € ]E eretore de mquahfén g

as Murphy’s Trulla system [7]. Our approach is similar to thEptlo, W Ich gives the ractlon_ 0 “”.‘e a sensor node must

work of Behring,et al. [8]. However, we make modificationshe"’}r the highest volume (relatlv_e to its |mmec_i|ate_ne|gh)oor

to the Behring algorithm, which are described in section IV(.JIurIng th,e most recent predefined _(sho_rt) time interval. If
We are not aware of any other previous work that ha@e robot's volume heard over the time interval exceeds the

combined the use of a distributed acoustic sensor netwark ﬂ)ua_hfymg ratio, it reports its position as the currentoelr
target localization with an Interceptor robot that is akie {Position estimate. If there is more than a single sensortrobo

efficiently move to the estimated target location in an irmIO(Shat exceeds t_he qualifying ratio (as is sometimes _the case
environment. when the ratio is less than 0.5), then all such robots wilbrep

their positions. If multiple targets are in the environmeait

I1l. DISTRIBUTED ACOUSTIC SENSORNET TARGET the target locations in the sensor network are reportetielft
DETECTION is a tie in the detected maximum volumes of two neighbors,

gn both report their positions. If the target is movingsh

In our research, the acoustic sensor nodes are sim : g .
es will be broken very quickly. In Figure 1, the numbers

AmigoBot robots that use an iPAQ computer for computation ; h de indi b | heard h q
along with wireless communications capabilities. The iPA each sensor node Indicate the volume heard at that node.

computer has an installed simple microphone that is used Brth's figure, two n(_)des detect local maxima of the sensor
acoustic sensing. In our larger research project, we agltnes network, corresponding to two targets. The_se two nodes are
issue of sensor net deployment of these simple robots usifi§. °nly nodes whose volume heard is higher than all of
heterogeneous herding techniques (see our companion pﬁp ¥ n_e|ghbors_. The_ pseudoc_ode for this distributed amus
[9] for details). For this paper, we assume that a map of t gtection algorithm is shown in Table .
enwronment has been previously built by robot team member.slv' D UAL WAVEFRONT PATH PLANNING FOR TARGET
(e.g., using a technique such as [1]), and that the acoustic
" L INTERCEPT

sensor nodes have been deployed to known positions within
the map. Like the integration of the Trulla path planner into a reaeti

Once the acoustic sensor robots have been deployed, theghitecture described in [5], our target intercept alioni can
activate their distributed acoustic sensor net to detegeta also be thought of as being composed of a deliberative com-
that are moving through the environment. Since our robgtenent (path planning) and a reactive component (navigatio
are currently equipped with only a very simple microphon@jong the path to the target while avoiding obstacles).&ihe
we assume that the target moving through the environmesisence of the intercept function is being able to quickdgtre
is making some detectable noise, and that the target is tbechanges in the target position, we wanted a path planner
only source of sound. As illustrated in Figure 1, after all§i with execution times that would not hamper the operation of
filtering the volume information, our approach has each robihe reactive component of the algorithm. Our empirical itesu
reporting its volume heard to its local neighbors (indidateshow that the dual wavefront path planner approach destribe
by the edges in the figure). Because of noisy data generakexie is capable of meeting this requirement.



TABLE |
THE DISTRIBUTEDACOUSTICSENSINGALGORITHM.

TABLE I
THE DUAL WAVEFRONT PATH PLANNER.

Distributed Acoustic Sensing Algorithm

Dual Wavefront Path Planner (map : M, position : s, position : g)

While (forever)
« Filter sound — For each sound instant:

— Subtract out all noise below a predefined volume;

— Use only sound data within specified frequency
range;

— Average sounds over a short period (approx. 1/3
second)

« Communicate my filtered sound)to my nearest neigh-
bors;

« ReceiveV[1..n] volumes from myn nearest neighbors;

« Update fraction of highest volume heard for most recent
time interval. (i.e., ifh > V[i] for all 4, then fraction
increases; else, it decreases.)

« If my fraction of highest volume heard qualifying ratio,

T) Convert mapl// to occupancy grid.

2) Expand obstacles.

3) Simultaneously propagate wavefronts from Staytad
Goal (g) points as follows:
While (not finished propagating)

« Propagate wave from, marking adjacent grid cells
with the minimum Euclidian distance fromto the
centers of these cells;

« Propagate wave from marking adjacent grid cells
with the minimum Euclidian distance frogto the
centers of these cells;

« If two wavefronts meet, we have finished propagat-
ing.

4) Extract path,p, in two phases: a) from wavefront

meeting point back te, and b) from wavefront meeting
point onwards tog, as follows (execute twice, using
temporary variable, wherez = s thenz = g):

« Select the two neighboring cells on opposite sides
of the wavefronts’ boundary which have the lowest
combined marked Euclidian distance;

« Place the center points of these two cells on the
path;

« While (not extracted back te)

— Select adjacent grid cell with the minimum
marked Euclidian distance;
— Add the center of this grid cell as a waypoint in

— Broadcast to the Interceptor robot my positigp,
as nearest to the detected target.

Our approach to path planning takes as input a map gener-
ated by mapping robots and uses dual-wavefront propagation
in an 8-connected occupancy grid to generate an optimal path
from the starting position to the goal position. This path
consists of a series of waypoints that the robot should ktrave

through. Beginning with the initial occupancy grid, ob&tsc _ Tfhihri)stg'rid cell containsz, the extraction is
are expanded to enable the generation of paths that keep complete.

robots away from potential collisions. This algorithm then « Return planned patp, which is a series of way-
propagates wavefronts from both the starting position and points.

the goal position until the wavefronts meet. A path is then
extracted from these wavefronts that minimizes the Euahde
distance between the starting and goal positions. This, path
which is a series of waypoints, is then smoothed to eliminate
unneeded waypoints and jagged path edges. The result is a
series of waypoints that take the robot from the startindhéo t
goal position.

Our approach is similar to the work of Behringt al.
[8]. However, we make two modifications to the Behring
algorithm. First, instead of propagating a single wavetfron
from the starting position, we implement dual wavefront
propagation from the starting and goal positions, which is
much more computationally efficient. Our second modification has thus enabled us to ensure that the

Second, instead of associating the cells on the wavefrétracted path will always be a shortest path. The pseudocod
boundary with the current number of iterations, we assecider this algorithm is shown in Table IL.
these cells with the Euclidian distance that has accundilzge  Once the distributed acoustic sensor net has detected ap-
the wave has propagated outward through neighboring ceftfsoximate target positions, this position information ens
In other words, aftern iterations, cells on the wavefrontto the Interceptor robots. The appropriate algorithm fogea
boundary can take on values ranging fram(no diagonal interception depends upon the resolution of the curregetar
travel) ton/2 (all diagonal travel). When the wavefronts meefposition calculation. In the case we have outlined in thisgpa
the two neighboring cells on opposite sides of the boundathe resolution is very coarse, in which the target position
with the smallest combined distance from the initial andigo& determined only to the nearest sensor net robot position.
positions are placed on the path. From these points, a p#ifth this coarse information, it is not possible to estimte
is constructed first back to the initial position, then ongvarcurrent trajectory of the target; instead, the informatias
to the goal position, by adding to the path in iterative stefge be combined with map reachability constraints to estmat
the neighboring cell having the smallest accumulated tii®ta a possible target trajectory. Future research may explase t

5) Smooth pathp, as follows:

« Remove all waypoints from that are colinear with
their adjacent waypoints.

« Remove any waypoint from p such that the line
between waypointss — 1 and 7 + 1 does not
intersect with an obstacle. Iterate until no remaining
waypoints can be removed without causing path to
intersect with an obstacle.

« Return smoothed path, which is a reduced series
of waypoints.




TABLE Il TABLE IV

THE TARGET INTERCEPTALGORITHM. TIMING RESULTS FROMPATH PLANNER.
The Target Intercept Algorithm(map : M) [ Path Length (meters] Planning Time (sec)|
« Repeat until done: 100 22
— g = Target position from Acoustic Sensor Net. 50 10
— s = Interceptor position from Localizer. 25 4
— p = Path from DuaWavefrontPathPlanner{/,s,g) 12 2
— distanceto_target =L = PathLength ) 6 1

If (distanceto_target< visualrange), exit loop.
distancetraveled = 0

— While (distancet led< L/2 . . . .
lle (distancetraveled< L/2) implementation, we model volumes as falling off with the
* Move along pattp

« s = Interceptor position from Localizer. square of the distance from the sound source. However, we
* Update distancéraveled have not modeled the physics of sound propagation through
« Transfer to visual target tracking. and around walls in the simulation.

We have fully implemented the dual wavefront propagation
algorithm for target intercept in Player/Stage, and it apes in
a variety of environmental maps. Figure 3 shows an example
possibility. of the flooding process of the dual wavefront path planner, as

The algorithm for target intercept, outlined in Table III,WeII as the resultmg smoothed path that is extracted froen th

{avefront propagation process.

Figure 4 shows a simulation result of the dual wavefront
Qath planner applied for target intercept. In this figures th
gray path from the left wing of the hospital, into and out of
3 veral rooms to the central region of the building, is thealc
th taken by the target. The black path from the right wing of
e hospital to the central region is the actual path dynaltyic
géanned and executed by the Interceptor robot in response to
the target motion. The Interceptor robot converts to a Visua

behavior to search for the target, which we call “visuaHaCking behavior once it is within sight of the target, ineon

tracking” mode. Once the target has been detected visuaﬂ{/ the rooms near the c_enter of th?. _bundmg. .

the Interceptor robot uses a vision-based tracking alyorio To evaluate the run time cgpab!lltles of our algonthm, we

keep the target within view. If the target is lost, the Inegtor collected data on the planning time requ.|red for different

robot again obtains information from the distributed adious path lengths. Taple IV shows the e>_<ecut|on tmes of our
sensor network on the approximate detected position of t gth planner as it p_Ians paths of varying Ie_ngths in the Fort
target, repeating the process. In this case, the dual veavefr am Houston hospital map. These times include wavefront

path planner would again be used to move to the vicinity Ofﬂgéopagatlon, path extraction, and path smogthing (steps 3-

target and repeat the attempt for visual detection and itigck in Table ). N(.)t included in these t|me§ are Steps. 1 and
2 in Table II, which are performed once, in preparation for

V. RESULTS assuming the Interceptor role, and have a combined executio

h imol d thi h both in simulati ti(rjne of 4 seconds for this example.
We have implemented this approach both in simulation andag can pe seen from the table, planning time decreases

on a team of physical robots. We report here the results |%fughlylinearly with decreasing path length. It is this peety

each. that allows the path planner to replan paths in a nearly
transparent manner as the robot moves closer to the targkt, a
to complete the interception in what appears to be a purely
For our simulation studies, we used the Player/Stage simydzctive way. A video of a sample run in Player/Stage of a

lator [10] using 70 pre-positioned acoustic sensor rol&ni  target moving through the distributed acoustic sensor nét a
indoor environment. The indoor environment for these &tsidipeing intercepted by the Interceptor robot is available.

was the floor plan of the decommissioned hospital at Fort Sam ]

Houston, in San Antonio, Texas, which as overall dimensiofs Physical Robot Results

of 140 meters by 53 meters. The cell size of the occupancyThe distributed acoustic sensor net algorithm has been
grid was approximately 20 centimeters. For the exampilmplemented on a team of AmigoBot robots, as shown in
environment reported in this paper, obstacles are expandegure 5. These robots have an iPAQ computer onboard
in the grid representation by approximately 20 centimeters running Linux. The iPAQs have a low-fidelity microphone that

enable generation of robot paths that keep the robot teary awee use for detecting sound. The robots communicate using
from obstacles. Figure 2 shows a snapshot of the distributa ad hoc wireless network. The behavior software intesface
acoustic sensor net from these simulation studies. In thidth the robot and microphone hardware using Player. In our

involves continually replanning and executing a path to t
current detected location of the target using the dual-fvaxé
propagation algorithm. We assume the Interceptor robogha;
Localizer module (e.g., [1]) that enables it to localizeelts
in the environment. Once the Interceptor has moved halfw.
along its planned path, it replans to take advantage of |’oet§3h
solutions that may be possible due to target motion. t
Once the Interceptor robot is within a pre-defined distan
from the target, the Interceptor robot activates a visuatde

A. Smulation Results



Fig. 2. Deployed sensor net in Player/Stage simulator. Eatéll robot icon (or dot, at this small image resolution)wgidhe position of a mobile sensor
node.

Fig. 3. Dual wavefront path planner in operation (read frefi fo right, from top to bottom). The robot starting pogitis in the right wing of the building.
The robot goal position is near the center of the buildinge Tinal figure shows the smoothed path (thin black line) etechdrom the dual wavefront
propagation.

Fig. 4. Simulation results showing our approach for intpticg targets. The gray path from the left is the actual paken by the target. The black path
from the right is the actual path dynamically planned anccetedl by the robot interceptor.



Fig. 5. Physical robot implementation of the acoustic sem&twork on a
team of AmigoBot robots.

implementation, the robot that hears the loudest volunatest
slightly in each direction effecting a “wiggle,” which prinles

nodes reporting the local maxima of detected sound as the
approximate position of a target. This information is dymam
cally fed to an Interceptor robot, which uses a dual wavefron
path planning process to continually replan a path to iefgrc
the moving target. We have successfully implemented our
approach in the Player/Stage simulator and presentedsedgul
this implementation. We have also implemented the disteitbu
acoustic sensor net on a team of physical robots, and have
demonstrated success in detecting the location of targets t
the resolution of the distances between sensor nodes. Work
is underway to complete the implementation of the robot
Interceptor capabilities on a physical robot, and to iraégr
these capabilities with the distributed acoustic senstwaord.

To our knowledge, this is the first implementation of a multi-
robot system that combines the use of an acoustic sensor
network for target detection with an Interceptor robot tteut
efficiently reach the moving position of the detected taiget
indoor environments.
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