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Abstract

We present a novel feature description algorithm to de-
scribe 3D local spatio-temporal features for human action
recognition. Our descriptor avoids the singularity and lim-
ited discrimination power issues of traditional 3D descrip-
tors by quantizing and describing visual features in the sim-
plex topological vector space. Specifically, given a feature’s
support region containing a set of 3D visual cues, we de-
compose the cues’ orientation into three angles, transform
the decomposed angles into the simplex space, and describe
them in such a space. Then, quadrant decomposition is per-
formed to improve discrimination, and a final feature vec-
tor is composed from the resulting histograms. We develop
intuitive visualization tools for analyzing feature character-
istics in the simplex topological vector space. Experimental
results demonstrate that our novel simplex-based orienta-
tion decomposition (SOD) descriptor substantially outper-
forms traditional 3D descriptors for the KTH, UCF Sport,
and Hollywood-2 benchmark action datasets. In addition,
the results show that our SOD descriptor is a superior indi-
vidual descriptor for action recognition.

1. Introduction

Local spatio-temporal features have shown promising
performance for human action recognition in unconstrained
scenarios [5} [7, [13} [17, 23} 27, 130]. These features charac-
terize local shape and motion variations, in space and time
dimensions, and can provide robust representation of hu-
man actions against disturbing effects such as background
clusters, occlusions, illumination, view variations, etc. Typ-
ically, local features are directly extracted from videos and
thus avoid potential failures resulting from pre-processing
steps, such as human segmentation. These desirable prop-
erties make local spatio-temporal features the most popular
method to recognize actions, and continue to attract increas-
ing attention from the computer vision community [[7, 28]

Feature description is a fundamental research problem in
local feature extraction [3} 13} 16} 23] aimed at construction
of compact, descriptive representations of visual cues, in-
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Figure 1: Overview of our novel simplex-based orientation
decomposition feature descriptor to quantize and represent
visual features in 3D space. Given a feature’s support region
containing a set of visual cues, our descriptor decomposes
each cue’s orientation into three angles. Then, the decom-
posed orientation vectors are transformed into the simplex
topological vector space, and features are described in this
space. After performing quadrant decomposition to further
increase discrimination power, our SOD descriptor concate-
nates the histograms from all decomposed quadrants into a
final feature vector.

cluding gradients and normals, computed within a feature’s
support region of a detected interest point. For example, the
well-known scale-invariant feature transform (SIFT) [16]
and histograms of oriented gradients (HOG) [3] descriptors
quantize 2D gradients in a support region by computing a
histogram from their orientations. Since the orientation of
a visual cue is independent of its magnitude, which is usu-
ally affected by image noise and illumination changes, ori-
entation quantization has proven to be a powerful, robust
approach for feature description [3} 16, [27].

To recognize unconstrained human actions, a large num-
ber of 3D local spatio-temporal features have been recently
introduced that are computed in xzyt (i.e., 2D spatial and
1D temporal) space [1} 4} [7, [13| 23]. Although orientation
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Figure 2: Issues of previous 3D feature description method-
ologies: Spherical coordinate based approaches suffer from
the singularity issue (Figure [2a)): bins at the poles (red tri-
angle) are significantly smaller than bins around the equa-
tor (blue rectangle). Regular polyhedron based approaches
have limited discrimination power (Figure [2b), since only
five regular polyhedrons exist.

description in 2D space is intuitive and well defined, de-
scription of 3D features is much more challenging. Previous
methods to describe 3D feature orientations can be general-
ly categorized into two groups: spherical coordinate-based
description and regular polyhedron-based description. As
shown in Figure [2] spherical coordinate description of 3D
features suffers from the singularity issue at the poles, while
regular polyhedron descriptors have limited discrimination
power due to the limited number of regular polyhedrons
(discussed further in Section [2.1]).

In this paper, we introduce a novel algorithm to describe
visual features in 3D space, which addresses the singularity
issue and provides a powerful description capability. The
overview of our feature description algorithm is illustrated
in Figure[I} Given the support region of a visual feature in
3D space (e.g., xyt spatio-temporal space), our description
algorithm decomposes each 3D visual cue (e.g., gradients)
into three dependent orientations. Then, all orientations are
transformed into the standard 2-simplex topological vector
space to deal with orientation dependency, and description
is performed in the simplex topological vector space. Final-
ly, to increase descriptive power, quadrant decomposition is
performed to refine the quantization results. The final de-
scriptor is a concatenated vector of the decomposed quanti-
zation results. Since our algorithm describes 3D features in
the simplex topological vector space, we name it Simplex-
based Orientation Decomposition (SOD) descriptor.

Our contributions are threefold. First, we introduce the
novel simplex-based feature description algorithm to quan-
tize and describe orientations of 3D visual features, which is
an efficient, powerful, general algorithm to represent spatio-
temporal (zyt) visual features in 3D space. Second, we de-
velop visualization tools that can be applied to intuitively
analyze feature characteristics in the abstract simplex topo-
logical space. Third, we empirically validate that visual fea-
tures in 3D space, e.g., 3D local spatio-temporal features in
xyt space, can greatly benefit from our descriptor, through

demonstrating their state-of-the-art performance on uncon-
strained action recognition. The code of our SOD descriptor
and its visualization tools are made available at:
http://dilab.eecs.utk.edu/SOD.

The remainder of the paper is structured as follows. Sec-
tion 2] discusses related studies. Then, Section [3]introduces
our novel SOD algorithm for 3D feature description. Addi-
tional characteristics of our algorithm are discussed in Sec-
tiond] Experimental results are presented in Section 5] Fi-
nally, the paper is concluded in Section [6]

2. Related Work

In this section, we discuss previous 3D visual feature de-
scription methods and briefly review existing 3D features
with the focus on human action recognition applications.

2.1. Description of 3D Features

A naive method to describe visual features in 3D space is
to directly concatenate 3D visual cues, such as 3D gradients
or normals, into a single vector [30]]. However, this method
is not robust [16| [27], since the magnitude of a visual cue
is usually affected by image noise, illumination variations,
etc. Because a visual cue’s orientation is independent of its
magnitude and is not similarly affected, orientation-based
methodology dominates 3D feature description approaches.

A large number of 3D feature description methods are
based on spherical coordinate systems [8} |10} [18} 23} 24}
29]. This description method applies polar angle 6 and az-
imuthal angle ¢ in spherical coordinate systems to encode
orientations and build orientation histograms. Then, 6 and
¢ are divided into a set of bins, as illustrated in Figure
which are used to construct a histogram of orientations of
visual cues in a 3D feature’s support region. However, as
observed in [8| [13]], spherical coordinate based descriptors
suffer from the singularity issue at the poles, as in Figure
[2a] where the blue bin near the equator is significantly larg-
er than the red bin at the north pole.

Another popular 3D feature description methodology is
based on regular polyhedrons [, [7} [11} 13} 25]. This tech-
nique approximates the orientation space by a regular poly-
hedron with congruent faces that are regular polygons, each
of which serves as a bin. Tracing each 3D vector along its
direction up to the intersection with a polyhedron face iden-
tifies the bin. Then, a feature is described using a histogram
of visual cues’ orientations. Since only five regular polyhe-
drons exist that support a maximum of 20 bins, as depicted
in Figure 2b] this methodology has limited discrimination
power when quantizing a large number of distinct features.

Because our SOD descriptor transforms 3D visual cues
to the simplex topological vector space instead of describ-
ing them in original Euclidian space, we are able to appro-
priately subdivide the transformed feature space and avoid
the singularity and limited discrimination power issues.
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2.2. 3D Features for Action Recognition

The large quantity of 3D spatio-temporal features pro-
posed in recent years can be generally grouped based upon
their information sources as follows:

e 3D spatio-temporal features computed in zyt spatio-
temporal space using a temporal sequence of images,
including 3D SIFT [18| 23], ST-SIFT [1], HOG3D
[13], CHOG3D [[11]], 3D optical flow [10], etc.

e Multi-channel 3D features, typically computed in xyt
spatio-temporal space and from multiple information
channels, such as RGB and depth channels, including
Color-SIFT [7], 4D-LST [30], etc.

The research problem we discuss in this paper, i.e., 3D
feature description, is an integral part of the methods to ex-
tract the above-mentioned features. Our SOD descriptor is
mathematically proven to work with any 3D vector and can
be directly applied to each of these 3D features. The univer-
sal applicability to a large number of 3D features highlights
the significance of our SOD descriptor.

It is also worth noting that, unlike feature encoding ap-
proaches such as unsupervised k-means and supervised en-
tropy optimization [14], which aim to build a vocabulary of
quantized features [2], our objective is to provide a descrip-
tion of each individual 3D visual feature.

3. The SOD Descriptor

In this section, we discuss our simplex-based orientation
description algorithm. The goal is to construct a compact,
representative description of 3D visual features. In particu-
lar, we describe 3D features in the simplex topological vec-
tor space to allow for appropriate subdivision of the 3D fea-
ture space. An overview of our SOD descriptor is depicted
in Figure|l| and its algorithmic description is presented in
Algorithm [T} Without loss of generality, we focus our dis-
cussion on describing 3D local spatio-temporal features that
are extracted in zyt space.

3.1. Orientation Decomposition

The input to our SOD descriptor is the support region of
a visual feature centered at a detected interest point in 3D
space, which contains a set of 3D visual cues. An example
of such a region containing 3D gradient cues in xyt space is
visualized in Figure [3a] Given a support region, the goal of
orientation decomposition is to decompose the orientation
of each 3D visual cue into three angles.

Let S = {vy,...,vy} denote a visual feature’s support
region that contains a set of 3D cues v; = (x4, y;,t;) € R3,
i =1,...,N. Given a user-defined reference Cartesian co-
ordinate system C defined by the unit vectors vy, vy and vy
in the direction of x,.-axis, y,.-axis and ¢,.-axis, respectively,
the orientation of v can be decomposed into three angles «,

Algorithm 1: Simplex-based 3D feature description

Input : S = {vi1,...,v~} (3D support region),
C={v}, vy, v.} (reference Cartesian coordinate),
k (parameter of edgewise simplex subdivision)
Output : f(.S) (feature vector)

1: fori < 1to N do

2 Decompose the orientation of v; by computing cos a,
cos 3, and cos ~y with respect to C acc. to Eq. (I);
3 Transform v; into the standard 2-simplex topological

vector space A?: §; = {cos? a, cos? 3, cos® v};

4 Compute indices 4(8;) = (r(8:), c(d:),1(ds)), acc. to

Eq.(5H7). of the sub-simplex in k edgewise subdivision;
5 Compute decomposed orientation quadrant assignment

q(8;) acc. to Eq. (8):

6: Increase the count of the sub-simplex indexed by %(d;)

in quadrant g(4;) by one;

7: end

8: Form f(S) by concatenating counts of the sub-simplices in
all eight quadrants;

o: return f(S)

5, and ~y with respect to the reference coordinates, which
can be computed in constant time by:

v -V 4 v- vy

v
cosa=—= cosff=—=>=, cosy= (1)
[[vll [[vll [[vll

The definitions of the decomposed angles are illustrated in
Figure [3b] To allow for flexible orientation decomposition,
the reference coordinate system does not necessarily over-
lap the standard Cartesian coordinate system that is repre-
sented by the standard basis ¢ = (1,0,0), 7 = (0, 1,0), and
k = (0,0,1) in the directions of z-axis, y-axis and ¢-axis,
respectively, as shown in Figure [3b]

It is noteworthy that description through independently
dividing «, § and ~ into equally sized cells in 3D space is
problematic, because the decomposed angles «, 3 and -y are
not independent, as will be demonstrated by Eq. (3). For
example, when «, 5 and y are equally divided into six bins
(a total number of 62 cells in 3D space), the 3D cell repre-
senting the angle range «, 3, v € [57/6,7) can never be
assigned by any cues, due to the constraints of the decom-
posed angles. We name this problem constrained orienta-
tion quantization, and for this reason it is not appropriate to
independently discretize the angles into bins in 3D space.

3.2. Transformation to Simplex Space

We provide an elegant solution to the constrained orien-
tation quantization problem to describe 3D visual features.
Our novel visual feature description algorithm is based on
the topological concept of simplex [6, [19, 21]], which is
a generalization of a tetrahedral region of space to arbi-
trary dimensions. Specifically, an n-simplex is the smallest
closed convex set that contains n + 1 vertices. For example,
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Figure 3: Orientation decomposition: given a feature’s sup-
port region, shown in Figure [3a] computed from seven tem-
porally adjacent frames, each 3D visual cue’s orientation is
decomposed into three angles («, 3 and -y) with respect to a
user-defined reference Cartesian coordinate system defined
by axes x,, y, and ¢, (Figure @

a 1-simplex is a line segment that contains two vertices, and
a 2-simplex is a triangle that is specified by three vertices.

We start discussion of our novel simplex-based orienta-
tion decomposition descriptor by showing that each 3D cue
can be transformed into a standard simplex topological vec-
tor space, where a standard n-simplex is a simplex whose
edges have the same length. This is mathematically defined,
in the context of a topological vector space, as follows:

Definition 1 (Standard n-simplex). The standard n-simplex
is defined as a topological vector space that is the subspace
of Rt satisfying:

n
A" = {(50, o, 8,) ERMTL Zai:175i>07w} )
i=0
Since we aim at describing visual features in 3D space,
we are interested in the standard 2-simplex that is defined
by three vertices A% = {4, 8};, 6. }, which can be used to
represent feature vectors that take values in the space R3.
Given a feature’s support region that contains a set of 3D
visual cues (e.g., gradients), i.e., S = {v1,...,vn}, each
3D visual cue v € S satisfies the following theorem:

Theorem 1. Any visual cue in a 3D Cartesian space can be
transformed into the standard 2-simplex topological vector
space.

Proof. For a given 3D visual cue v € R3, its orientation in
3D space can be decomposed into «, 8 and v with respect to
a given reference Cartesian space defined by the unit vectors
vr, vZ and v; (as shown in Eq. ). Assuming 4§, =cos? a,
dg= cos? 3, and 0y = cos? 7, the vector representing the cue
belongs to a standard simplex topological vector space, i.e.,

8= 0q,05,0,) € A?, because 8, >0, 3 >0, 4., >0, and:
o + 05 + 6, = cos® a + cos® B + cos?
(v-vp)? + (v-v))? + (v vf)?

Y =1 3
o] ©)

Thus, the 3D visual cue encoded by § = (04,03, d) takes
values in the standard 2-simplex vector space. O

The concept of simplex is rather abstract. To address this
issue, we developed visualization tools for intuitive analysis
of the visual cues’ characteristics in the standard 2-simplex
topological vector space. In the paper, we also adopt these
tools to intuitively explain the idea of our descriptor.

As shown in Figurea] the standard 2-simplex topologi-
cal vector space can be graphically represented as an equi-
lateral triangle on a plane. Using this representation, the
element of a transformed visual cue vector § = (d4,dg,d+)
represents the distance ratio of the projected point on the
2-simplex to its respective edge; that is:

1

0=0d00) =g 50 va,
e Y

(da, dg, dy) @)

where d,, +dg +d, = h, and h is the height of the standard
2-simplex triangle that is computed by h = /3b/2, given
the edge length b. For example, given the transformed vec-
tor § = (0.5,0.3,0.2) of the visual cue in Figure its
projected data point on the simplex satisfies that d, =0.5h,
dg=0.3h, and d, =0.2h, as illustrated in Figure @

3.3. Description in Simplex Space

After projecting the 3D visual cues onto the standard 2-
simplex, we discuss how to describe the transformed visual
cue vectors in the standard 2-simplex topological space. In
particular, we prove that the standard 2-simplex topologi-
cal vector space can be subdivided into a large number of
equally-sized cells, as stated by the following theorem:

Theorem 2. For every integer k > 1, there exists a subdivi-
sion of the standard 2-simplex topological vector space into
k? standard sub-simplices that have the same size.

Proof. Given a standard 2-simplex A2 with edge length b
and height h, we apply edgewise subdivision to divide A2,
which equally divides each edge into k& segments and con-
nects any pair of endpoints if the line segment represented
by the endpoints is parallel to an edge. Then, the total num-
ber of sub-simplices is: 1 +3+ - - + (2k — 1) = k2. Since
all sub-simplices have the same edge length b/k and height
h/k, they are thus standard and have the same size. O

From Theorem [2] arises the description power of our al-
gorithm, which can scale without bound and therefore avoid
the limited discrimination power issue of the regular poly-
hedron based approach. Theorem [2] also demonstrates that
all bins (i.e., sub-simplices) have the same size, which ad-
dresses the singularity issue of the spheral coordinate based
descriptor. Figure[daldepicts an example that subdivides the
standard 2-simplex topological vector space into k? = 49
equally-sized sub-simplices.



To efficiently identify each individual sub-simplex in the
standard 2-simplex topological vector space, we propose a
new sub-simplex indexing method using three indices, i.e.,
row, column, and layer, which are defined as follows:

Definition 2 (Indices of sub-simplices). Given k edgewise
subdivision of the standard 2-simplex A* = {47, 85,0},
each height is divided into k intervals indexed by 1, ... k.
Then, row and column are defined as the interval indices of
the heights with respect to the edges opposite to §,, and 5%,
respectively. Layer is a binary value that indicates whether
a sub-simplex has a down-pointing triangular shape with
respect to an edge.

kA

7 Compute column index 91 0% Compute layer index

b5 o

o500

R Compute row index

(a) Feature projection (b) Computation of subdivision indices

Figure 4: An illustrative example of our topological trans-
formation and sub-simplex index computation in the stan-
dard 2-simplex topological vector space, when k = 7.

Using the row, column and layer definitions, we are able
to efficiently assign each transformed visual cue vector to
a sub-simplex in constant time. Given a transformed visual
cue & = (84,03,0,) € A% our SOD algorithm computes
its row r, column c and layer [ indices as follows:

7(8) = [kda] + 1(da = 0), re{l,....k} 5
c(d) = [kdg] + 1(dp = 0), ce{l,....k} (6
1(8) = (r(8) + c(8) + |kdy| +1(0s # 1) + k) mod2,

1€ {0,1} (7)

where 1(-) is the indicator function that is used to deal with
the special cases when § is projected onto the edges of the
sub-simplices in the standard 2-simplex vector space.
Then, we can directly assign d to a sub-simplex indexed
by r, c and [. An illustrative example is provided in Figure
[b]to explain our index computation method. For the trans-
formed 3D visual cue § = (0.5,0.3,0.2), after computing
its row and column indices, i.e., 7(d) = 4 and ¢(d) = 2,
a diamond that contains a pair of sub-simplices is located.
Then, the layer index is computed, i.e., [(§) = 0 indicating
that the sub-simplex is not upside-down, which determines
the final sub-simplex assignment to the 3D visual cue.
After assigning all 3D visual cues in a feature’s support
region into their respective sub-simplices, each sub-simplex
counts the number of cues assigned to it, and a histogram
using these sub-simplices as bins is formed to describe the
visual feature. An intuitive visualization tool is provided to

(a) 2D view

(b) 3D view

Figure 5: Visualization of the histogram of the visual cues
contained in the support region of a 3D feature when k =
12. Figure [5a] shows a 2D view with projection distribution
of the cues, where a warmer color denotes a larger number
of cues falling in the sub-simplex. A more intuitive 3D view
is depicted Figure [Sb|

investigate the histogram in the simplex topological vector
space, as depicted in Figure[5] In particular, Figure [5al also
visualizes the 3D visual cue’s orientation distribution in the
transformed simplex vector space.

3.4. Quadrant Decomposition

When the histogram of 3D visual cues is obtained in the
simplex space, quadrant decomposition is performed to fur-
ther improve the discriminative power of our SOD descrip-
tor. Since the cosine-squared function maps all visual cues
to the first quadrant and removes the signs of their orienta-
tions, the objective of quadrant decomposition is to describe
the orientation signs of visual cues from different quadrants
in the reference Cartesian coordinate system. There exist
eight quadrants in a 3D Cartesian space that are represented
by their signs (+1,+1, +1). Given the orientation of a 3D
cue, its quadrant assignment is efficiently computed by:

a(8) = ( cos cos 7y ) ®)

|cosa|’ |cosB|’ | cos|

cos 3

As a result, the orientation histogram obtained in the
simplex vector space is decomposed into eight parts accord-
ing to different orientation quadrants. It is noteworthy that
quadrant assignments are computed with respect to a user-
defined coordinate system, which provides additional flex-
ibility to our SOD descriptor. An example of quadrant de-
composition is shown in Figure[l]

In order to construct a final vector to describe a 3D vi-
sual feature S ={v1,..., vy}, all decomposed histograms
in different quadrants are concatenated into a single vector
f(S) that is of size 8k2, i.e., each of the eight orientation
quadrants has a histogram formed by k2 sub-simplices.

4. Discussion

Efficiency and Runtime Our SOD descriptor employs
cosine values to quantize feature orientations in 3D space,



which are efficiently computed using the dot product. For
each single 3D visual cue, orientation decomposition (Eq.
(1)), topological space transformation (in Theorem|I)), sub-
simplex index computation (Eq.(5} [6] [7)), and quadrant de-
composition (Eq. ) take constant time O(1) to perform.
Concatenation to form a feature vector takes O(k?) runtime,
where £k is the edgewise simplex subdivision parameter. Be-
cause typically N >> k2, i.e., the number of visual cues is
much greater than the number of bins in a histogram, our
SOD algorithm only takes O(N) time to describe a 3D vi-
sual feature that contains N visual cues.

Multi-Channel 3D Features Our SOD algorithm can
be directly applied on visual features extracted from multi-
ple channels in 3D space, which include color-depth spatio-
temporal features [30]] that typically apply descriptors to in-
tensity and depth image sequences in xyt space, and multi-
color spatio-temporal features [7] that apply descriptors to
multiple color channels of color image sequences. Follow-
ing [7,130]], one can apply our descriptor over each channel
to obtain a vector that describes 3D visual cues in that chan-
nel, and combine them together to form a final feature vec-
tor. In this scenario, the 3D visualization of our descriptor
is a stacked bar plot on the standard 2-simplex.

High Dimensional Features The SOD descriptor is not
limited to describing features in 3D space; our methodology
can be extended to quantize and describe high dimension-
al features. Given a d-dimensional visual cue v € R? and
a reference coordinate C = {vf,...,v}}, its orientation
can be decomposed into d angles (ayq, . .., ag), in a manner
similar to Eq. , which satisfies Z?Zl cos? a; = 1. Thus,
v can be projected onto the standard (d — 1)-simplex (i.e.,
an extension of Theorem [T). In addition, [6] showed that a
(d—1)-simplex can be subdivided into k% sub-simplices
with the same (d—1)-dimensional volume using k edgewise
subdivision (i.e., an extension of Theorem @) Thus, our
fundamental theorems still hold, meaning the SOD descrip-
tor can be applied to features in high dimensional space.

5. Empirical Study

Here we detail the experiments conducted to evaluate the
performance of our SOD descriptor on action recognition.
We would like to highlight that we are not constructing new
classifiers and detectors; rather, we intentionally use exist-
ing benchmark classifiers and detectors in combination with
our novel descriptor to emphasize the performance gain re-
sulting specifically from our SOD descriptor.

5.1. Implementation and Experiment Setup

Detectors Three detectors are adopted to detect spatio-
temporal interest points from videos in xyt space. (1) Har-
ris3D detector [15] is a spatio-temporal extension of the
Harris cornerness criterion that is based on the eigenvalues
of a spatio-temporal second-moment matrix. We apply the

original implementation [[15] and standard parameter setups
c=+V2,i=2..,7and 7 = {V/2,V4}. (2) Gabor
detector [S]] applies separable filters on spatial and temporal
dimensions to select interest points in zyt space. We adopt
the original implementation [5] and standard parameter se-
tups o = 2, 7 = 4 in our experiments. (3) Multi-channel
Gabor detector [7] detects spatial-temporal interest points
using Gabor detectors to compute image responses based
on intensity and normalized chromatic channels. We apply
o = 2, 7 = 4 as in the original work [[7].

Descriptors The size of support regions is set to A, =
A, =80, and A, =67, as in [13|27]. The support region’s
size and cell layout may be optimized over a specific dataset
[13]. To maintain focus on the descriptors themselves, we
refrain from such an optimization, following [7,27]. We use
the standard Cartesian space as our reference coordinates.
When using multi-channel detectors, the multi-channel de-
scription mechanism (discussed in Section[d) is applied.

Two 3D description methodologies based on spherical
coordinates, such as 3D SIFT [23], and regular polyhe-
drons, such as HOG3D [13]] are used as our 3D description
baselines (discussed in Section [2.1)). Feature descriptors in
previous works are also adopted as baselines to compare the
feature discrimination’s ability to recognize human actions.

Recognition Following [7, [13| 27]], action recognition
is performed in a standard bag-of-features learning frame-
work and a codebook is created through clustering 200,000
randomly sampled features using k-means into 4000 code-
words. For classification, we use non-linear SVMs with X2'
kernels and the one-against-all approach [7, [13} [27]].

5.2. Datasets

We perform experiments using three action datasets. The
KTH dataset [22] contains six actions performed by 25 sub-
jects in four scenarios. Following [22], we apply the all-in-
one experimental settings and the accuracy metric as the
performance measure. The UCF Sport dataset [20] con-
tains ten sporting actions in 150 videos that exhibits a large
intra-class variability. Following the standard settings [20],
performance is evaluated using accuracy in a leave-one-out
cross validation framework. The Hollywood-2 dataset [17]]
contains 12 complex human actions that are collected from
69 different Hollywood movies. The actions are performed
in unconstrained, realistic scenarios, and viewed from dif-
ferent camera angles. Following the standard setup [17], the
dataset is divided into 823 training and 884 testing exam-
ples; performance is evaluated using the precision measure.

5.3. Descriptor Evaluation

We show our SOD descriptor’s superior performance by
comparing it with the 3D baseline descriptors. We also in-
vestigate our descriptor’s sensitivity with respect to the size
of the final feature vector, which turns out to be very impor-
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Figure 6: Sensitivity of our SOD descriptor and comparison
with baseline 3D descriptors based on spherical coordinates
or regular polyhedrons. Error bars are standard deviations.

tant but is rarely studied in previous descriptors. Sensitivity
is empirically analyzed using five fold cross-validation over
training sets. To focus on investigating characteristics of the
descriptors themselves, no additional feature aggregation is
applied, i.e., the support region is not divided into cells. Ex-
perimental results over three datasets are graphically shown
in Figure[6] Because the baseline descriptor based on regu-
lar polyhedrons with four and six faces (i.e., bins) performs
poorly, we only present the results using polyhedrons with
8, 12 and 20 faces. It is worth recalling that 20 is the max-
imum number of bins supported by this descriptor as it suf-
fers from the limited discrimination power issue.

For all tested spatio-temporal feature detectors, our SOD
descriptor significantly outperforms the 3D baseline de-
scriptors, in general. The discrimination ability provided by
the polyhedron baseline is not sufficient to represent com-
plex actions in real-world scenarios. The performance im-
provement provided by our SOD descriptor over the spheri-
cal baseline highlights the advantages of quantizing and de-
scribing spatio-temporal features in the simplex topological
space that can be equally subdivided into any large number
of sub-simplices, thus addressing the singularity issue.

In addition, as Figure [§] illustrates, the descriptor’s rep-
resentation ability is greatly affected by the number of bins
used to form the final feature vector. All descriptors gener-
ally produce poor recognition results when a small number
of bins (e.g., less than 15) is used; in this case, the descrip-
tors are not sufficiently discriminative. On the other hand, a
very large number of bins (e.g., greater than 1000) also hurts

recognition performance. This occurs because although the
descriptors discriminate well between visual features, not
enough cues fall into each bin. Another important observa-
tion is that the ideal number of bins depends on the dataset
complexity; a more complex dataset usually requires a larg-
er number of bins. For example, using around 300 bins for
the KTH and UCF Sport datasets and around 600 bins for
the more complex Hollywood-2 dataset generally leads to
satisfactory recognition performance. In summary, our sen-
sitivity analysis results demonstrate the importance of care-
fully selecting the number of bins, by considering both de-
scriptor’s discrimination ability and dataset complexity.

5.4. Comparison with the State of the Art

We compare our SOD descriptor with the state-of-the-art
feature description methods, in terms of their performance
on human action recognition. The compared methods gen-
erally follow similar experimental setups that are based on
feature pooling, bag-of-features encoding and SVM-based
classification. Following [1}14}[7, 111} 27]], we adopt a spatio-
temporal pooling scheme that divides each support region
into 4 x4 x 3 cells to construct bag-of-features models.

Different descriptors are compared in Tables [I] 2] and
which show human action recognition performance over the
KTH, UCF Sport and Hollywood-2 datasets, respectively.
Our SOD descriptor achieves a 94.8% accuracy on KTH,
a 87.5% accuracy on UCF Sport, and a 50.9% overall pre-
cision on Hollywood-2. Comparison shows that our SOD
descriptor is the best-performing individual descriptor (i.e.,
without combining multiple descriptors, as in [26]), which
again shows the effectiveness of our SOD algorithm to de-
scribe local spatio-temporal features in xyt space.

Table 1: Comparison of accuracy (%) on the KTH dataset.

[ 2D description methods [ Acc. H 3D description methods [ Acc. ]

Harris3D + HOG [27] 80.9 || Harris3D + 3D SIFT [18] | 82.7
Gabor + HOG [12] 82.3 Gabor + Cuboid [5]] 89.1
Gabor + HOF [12] 88.2 || ST-SIFT + HOG3D [ | 90.7

Gabor + HOF/HOF [12] 88.7 Gabor + HOG3D [13] |91.4
Hessian3D + HOG/HOF [27] | 88.7 || Harris3D + HOG3D [12] | 92.4
Harris3D + HOG/HOF [27] | 91.8 || FAST + CHOG3D [11] | 93.1
Harris3D + HOF [27]] 92.1 Multi-ch. Gabor + Poly. | 92.9
Oriented energy desc. [4] 93.2 || Multi-ch. Gabor + Sphe. | 93.8
Context + HOG/HOF [9] 94.1 || Multi-ch. Gabor + SOD | 94.8

Table 2: Comparison of accuracy (%) with state-of-the-art
descriptors on the UCF Sport datset.

[ 2D description methods [ Acc. H 3D description methods [ Acc. ]
Harris3D + HOG [27] 714 Gabor + Cuboids [12] 76.6

Gabor + HOG [12] 72.7 || Harris3D + HOG3D [27]] | 79.7
Harris3D + HOF [27] 754 ST-SIFT + HOG3D [1] | 80.5
Gabor + HOF [12] 76.7 Gabor + HOG3D [13] 82.9

Gabor + HOG/HOF [12] 77.7 || Multi-ch. G. + HOG3D [7] | 85.6
Harris3D + HOG/HOF [27] | 78.1 Multi-ch. Gabor + Poly. | 85.2
Hessian3D + HOG/HOF [27] | 79.3 Multi-ch. Gabor + Sphe. | 86.3
Oriented energy desc. [4] | 81.5 || Multi-ch. Gabor + SOD | 87.5




Table 3: Descriptor comparison on Hollywood-2 using precision (%). ‘& f* denotes ‘HOG/HOF combined with f features’.

Actions Multi-ch. Cuboid + 3D descriptors || Harris3D + Harris3D + 2D descriptors
Our SOD | Polyhedron [ Spherical || HOG3D (i3] | HOG [12] | HOF [12] | HOG/HOF [12] | & SIFT [17] |& context [] [& global [26]
AnswerPhone 18.1 159 17.1 16.3 11.8 11.6 15.3 13.1 15.57 25.9
DriveCar 88.1 85.8 87.2 86.3 79.0 84.8 85.8 81.0 87.0 859
Eat 61.6 57.8 60.7 55.8 434 58.6 63.1 30.6 50.9 56.4
FightPerson 76.2 74.5 75.8 77.2 60.4 72.1 71.3 62.5 73.1 74.9
GetOutCar 36.3 335 34.3 35.7 24.9 19.6 32.3 8.6 27.2 44.0
HandShake 55.9 51.3 53.5 55.7 36.3 50.2 49.5 19.1 17.2 29.7
HugPerson 48.3 46.5 47.2 47.9 29.6 30.9 38.6 17.0 27.2 46.1
Kiss 58.4 54.2 55.3 51.1 435 45.1 49.3 57.6 42.9 55.0
Run 72.1 67.3 69.7 71.7 62.1 68.5 67.2 55.5 66.9 69.4
SitDown 51.9 48.2 49.3 47.6 30.3 56.4 57.3 30.0 41.6 58.9
SitUp 224 18.5 20.3 222 16.1 8.5 22.5 17.8 72 18.4
StandUp 21.6 19.6 20.8 15.6 20.9 18.9 20.4 335 48.6 57.4
[ Overall [ 509 | 478 | 493 [ 486 | 382 | 438 | 477 | 355 | 421 | 518 |

6. Conclusion

We introduce a novel simplex-based orientation decom-
position descriptor to quantize and represent 3D visual fea-
tures including local spatio-temporal features in zyt space.
Our technique decomposes each 3D visual cue in a feature’s
support region into three angles and transforms the decom-
posed angles into the simplex topological vector space. Fea-
ture description is performed in the simplex space, which is
able to address the singularity and limited discrimination
power issues. Then, quadrant decomposition is performed
to improve our SOD descriptor’s discrimination capability,
and a final feature vector is formed by combining decom-
posed histograms from all quadrants. Extensive empirical
study using three benchmark action datasets has been con-
ducted, which shows that our descriptor significantly out-
performs previous 3D feature descriptors based on spherical
coordinates or regular polyhedrons and achieves state-of-
the-art description power for recognition of human actions.

References

[1] M. Al Ghamdi, L. Zhang, and Y. Gotoh. Spatio-temporal SIFT and
its application to human action classification. In ECCV, 2012.

K. Chatfield, V. S. Lempitsky, A. Vedaldi, and A. Zisserman. The
devil is in the details: an evaluation of recent feature encoding meth-
ods. In BMVC, 2011.

N. Dalal and B. Triggs. Histograms of oriented gradients for human
detection. In CVPR, 2005.

K. G. Derpanis, M. Sizintsev, K. J. Cannons, and R. P. Wildes. Ac-
tion spotting and recognition based on a spatiotemporal orientation
analysis. PAMI, 35(3):527-540, Mar. 2013.

P. Dolldr, V. Rabaud, G. Cottrell, and S. Belongie. Behavior recog-
nition via sparse spatio-temporal features. In VSPETS, 2005.

H. Edelsbrunner and D. R. Grayson. Edgewise subdivision of a sim-
plex. In SoCG, 1999.

I. Everts, J. C. van Gemert, and T. Gevers. Evaluation of color STIPs
for human action recognition. In CVPR, 2013.

G. Flitton, T. P. Breckon, and N. Megherbi. A comparison of 3D
interest point descriptors with application to airport baggage object
detection in complex CT imagery. PR, 46(9):2420-2436, Sept. 2013.
D. Han, L. Bo, and C. Sminchisescu. Selection and context for action
recognition. In /CCV, 2009.

[2]

[3]

[4]

[5]
[6]
[7]

[8]

[9]

[10]

(11]

[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
(23]

[24]

[25]
[26]

[27]

(28]
[29]

[30]

M. Holte, T. Moeslund, and P. Fihl. View-invariant gesture recog-
nition using 3D optical flow and harmonic motion context. CVIU,
114(12):1353-1361, 2010.

Y. Ji, A. Shimada, H. Nagahara, and R. ichiro Taniguchi. A compact
descriptor CHOG3D and its application in human action recognition.
IEEJ Trans. Electr. and Electron. Eng., 8(1):69-77, 2013.

A. Kléaser. Learning human actions in video. PhD thesis, Université
de Grenoble, 2010.

A. Kliser, M. Marszalek, and C. Schmid. A spatio-temporal descrip-
tor based on 3D-gradients. In BMVC, 2008.

Y. Kuang, M. Byrod, and K. Astrom. Supervised feature quantization
with entropy optimization. In ICCVW, 2011.

I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld. Learning
realistic human actions from movies. In CVPR, 2008.

D. G. Lowe. Distinctive image features from scale-invariant key-
points. IJCV, 60(2):91-110, Nov. 2004.

M. Marszalek, I. Laptev, and C. Schmid. Actions in context. In
CVPR, 2009.

R. Mattivi and L. Shao. Robust spatio-temporal features for human
action recognition. In MAPC, 2011.

J. Munkres. Elements of Algebraic Topology. Advanced book clas-
sics. Perseus Books, 1984.

M. D. Rodriguez, J. Ahmed, and M. Shah. Action MACH a spatio-
temporal maximum average correlation height filter for action recog-
nition. In CVPR, 2008.

W. Rudin. Principles of mathematical analysis. McGraw-Hill, 1964.
C. Schuldt, I. Laptev, and B. Caputo. Recognizing human actions: A
local SVM approach. In CVPR, 2004.

P. Scovanner, S. Ali, and M. Shah. A 3-dimensional SIFT descriptor
and its application to action recognition. In ICME, 2007.

S. Tang, X. Wang, X. Lv, T. X. Han, J. Keller, Z. He, M. Skubic, and
S. Lao. Histogram of oriented normal vectors for object recognition
with a depth sensor. In ACCV, 2012.

Y. Tian, R. Sukthankar, and M. Shah. Spatiotemporal deformable
part models for action detection. In CVPR, 2013.

M. M. Ullah, S. N. Parizi, and I. Laptev. Improving bag-of-features
action recognition with non-local cues. In BMVC, 2010.

H. Wang, M. M. Ullah, A. Kliser, I. Laptev, and C. Schmid. Eval-
uation of local spatio-temporal features for action recognition. In
BMVC, 20009.

L. Xia and J. K. Aggarwal. Spatio-temporal depth cuboid similarity
feature for activity recognition using depth camera. In CPVR, 2013.
L. Xia, C.-C. Chen, and J. K. Aggarwal. View invariant human action
recognition using histograms of 3D joints. In CVPRW, 2012.

H. Zhang and L. Parker. 4-dimensional local spatio-temporal features
for human activity recognition. In /ROS, 2011.



