
SRAC: Self-Reflective Risk-Aware Artificial Cognitive Models for
Robot Response to Human Activities

Hao Zhang1, Christopher Reardon2, Fei Han1, and Lynne E. Parker2

Abstract— In human-robot teaming, interpretation of human
actions, recognition of new situations, and appropriate decision
making are crucial abilities for cooperative robots (“co-robots”)
to interact intelligently with humans. Given an observation, it
is important that human activities are interpreted the same
way by co-robots as human peers so that robot actions can
be appropriate to the activity at hand. A novel interpretability
indicator is introduced to address this issue. When a robot
encounters a new scenario, the pretrained activity recognition
model, no matter how accurate in a known situation, may not
produce the correct information necessary to act appropriately
and safely in new situations. To effectively and safely interact
with people, we introduce a new generalizability indicator that
allows a co-robot to self-reflect and reason about when an
observation falls outside the co-robot’s learned model. Based
on topic modeling and the two novel indicators, we propose a
new Self-reflective Risk-aware Artificial Cognitive (SRAC) model,
which allows a robot to make better decisions by incorporating
robot action risks and identifying new situations. Experiments
both using real-world datasets and on physical robots suggest
that our SRAC model significantly outperforms the traditional
methodology and enables better decision making in response to
human behaviors.

I. INTRODUCTION

Recognition of human behaviors and appropriate decision-
making are crucial capabilities for a cooperative robot (“co-
robot”) to understand and interact with human peers. To
this end, an intelligent co-robot requires an artificial cog-
nitive model to integrate perception, reasoning, and decision
making in order to effectively respond to humans. Artificial
cognition has its origin in cybernetics; its intention is to
create a science of mind based on logic [1]. Among other
mechanisms, cognitivism is a most widely used cognitive
paradigm [2]. Several cognitive architectures were developed
within this paradigm, including ACT-R [3], Soar [4], C4 [5],
and architectures for robotics [6]. Because an architecture
represents the connection and interaction of different cog-
nitive components, it cannot accomplish a specific task on
its own without specifying each component that can provide
knowledge to the cognitive architecture. The combination of
the cognitive architecture and components is usually referred
to as a cognitive model [2].

Implementing such an artificial cognitive system is chal-
lenging, since the high-level processes (e.g., reasoning and
decision making) must be able to seamlessly work with
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Fig. 1. Overview of the SRAC model for robot response to human activities.
The novel self-reflection module allows a co-robot to reason about when the
learned knowledge no longer applies. Decisions are made by considering
both human activity category distributions and robot action risks. Entities
in ellipses are prior knowledge to the SRAC model. Information flows from
modules with lighter colors to those with darker colors.

the low-level components, e.g., perception, under significant
uncertainty in a complex environment [7]. In the context
of human-robot collaboration, perceiving human behaviors
is a necessary component, where uncertainty arises due to
human behavior complexity, including variations in human
motions and appearances, and challenges of machine vision,
such as lighting changes and occlusion. This perception
uncertainty is addressed in this work using the bag-of-visual-
words (BoW) representation based on local spatio-temporal
features, which has previously shown promising performance
[8], [9], [10].

To further process the perceptual data, a high-level reason-
ing component is necessary for a co-robot to make decisions.
In recent years, topic modeling has attracted increasing
attention in human behavior discovery and recognition due to
its ability to generate a distribution over activities of interest,
and its promising performance using BoW representations in
robotics applications [10], [11]. However, previous work only
aimed at human behavior understanding; the essential task of
incorporating topic modeling into cognitive decision making
(e.g., selecting a response action) is not well analyzed.

Traditional activity recognition systems typically use ac-
curacy as a performance metric [12]. Because the accuracy
metric ignores the distribution of activity categories, which
is richer and more informative than a single label, it is not
appropriate for decision making. For example, in a task of
behavior understanding with two categories, assume that two
recognition systems obtain two distributions [0.8, 0.2] and



[0.55, 0.45] on a given observation, and the ground truth
indicates the first category is correct. Although both systems
are accurate, in the sense that the most probable category
matches the ground truth, the first model obviously performs
better, since it better separates the correct from the incorrect
assignment. Previous studies did not consider this important
phenomenon.

In real-world applications, artificial cognitive models must
be applied in an online fashion. If a co-robot is unable to
determine whether its knowledge is accurate, then if it ob-
serves a new human behavior that was not presented during
the training phase, it cannot be correctly recognized, because
the learned behavior recognition model no longer applies.
Decision making based on incorrect recognition in situations
like these can result in inappropriate or even unsafe robot
action response. Thus, an artificial cognitive model requires
the capability to self-reflect whether the learned activity
recognition system becomes less applicable, analogous to
human self-reflection on learned knowledge, when applied
in a new unstructured environment. This problem was not
well investigated in previous works.

In this paper, we develop a novel artificial cognitive model,
based on topic models, for robot decision making in response
to human behaviors. Our model is able to incorporate human
behavior distributions and take into account robot action risks
to make more appropriate decisions (i.e., risk-aware). Also,
our model is able to identify new scenarios when the learned
recognition subsystem is less applicable (i.e., self-reflective).
Accordingly, we call our model the self-reflective, risk-aware
artificial cognitive (SRAC) model.

Our primary contributions are twofold:
• Two novel indicators are proposed. The interpretability

indicator (II ) enables a co-robot to interpret category
distributions in a similar manner to humans. The online
generalizability indicator (IG) measures the human be-
havior recognition model’s generalization capacity (i.e.,
how well unseen observations can be represented by the
learned model).

• A novel artificial cognitive model (i.e., SRAC) is intro-
duced based on topic models and the indicators, which
is able to consider robot action risks and perform self-
reflection to improve robot decision making in response
to human activities in new situations.

The rest of the paper is organized as follows. We describe
the artificial cognitive architecture and its functional modules
in Section II. Then, Section III introduces the new indicators.
Section IV presents self-reflective risk-aware decision mak-
ing. Experimental results are discussed in Section V. Finally,
we conclude our paper in Section VI.

II. TOPIC MODELING FOR ARTIFICIAL COGNITION

A. Cognitive Architecture Overview
The proposed SRAC model is inspired by the C4 cognitive

architecture [5]. As shown in Fig. 1, our model is organized
into four modules by their functionality:
• Sensory and perception: Visual cameras observe the

environment. Then, the perception system builds a BoW

representation from raw data, which can be processed
by topic models.

• Probabilistic reasoning: Topic models are applied to
reason about human activities, which are trained off-
line and used online. The training set is provided as
a prior that encodes a history of sensory information.
This module uses the proposed indicators to select topic
models that better match human’s perspective, and to
discover new activities in an online fashion.

• Decision making: Robot action risk based on topic mod-
els and the evaluation results is estimated and a response
robot action that minimizes this risk is selected. The risk
is provided as a prior to the module.

• Navigation and motor system: The selected robot action
is executed in response to human activities.

B. Topic Modeling

Latent Dirichlet Allocation (LDA) [13], which showed
promising activity recognition performance in our prior work
[10], is applied in the SRAC model.

Given a set of observations {w}, LDA models each of K
activities as a multinomial distribution of all possible visual
words in the dictionary D. This distribution is parameterized
by ϕ= {ϕw1

, . . . , ϕw|D|}, where ϕw is the probability that
the word w is generated by the activity. LDA also represents
eachw as a collection of visual words, and assumes that each
word w ∈ w is associated with a latent activity assignment
z. By applying the visual words to connect observations and
activities, LDA models w as a multinomial distribution over
the activities, which is parameterized by θ={θz1 , . . . , θzK},
where θz is the probability that w is generated by the activity
z. LDA is a Bayesian model, which places Dirichlet priors
on the multinomial parameters: ϕ∼Dir(β) and θ∼Dir(α),
where β = {βw1 , . . . , βw|D|} and α = {αz1 , . . . , αzK} are
the concentration hyperparameters.

To understand human behaviors, our model applies Gibbs
sampling [14] to compute the per-observation activity distri-
bution θ. At convergence, the element θzk ∈θ, k=1, . . . ,K,
is estimated by:

θ̂zk =
nzk + αzk∑
z (nz + αz)

(1)

where nz is the count of a visual word being assigned to an
activity zk in the observation.

III. INTERPRETABILITY AND GENERALIZABILITY

To improve artificial cognitive modeling, we introduce two
novel indicators and discuss their relationship in this section,
which are the core of the Self-Reflection module in Fig. 1.

A. Interpretability Indicator

We observe that accuracy is not an appropriate assessment
metric for robot decision making, since it only considers
the most probable human activity category and ignores the
others. To utilize the category distribution, which contains
much richer information, the interpretability indicator, de-
noted by II , is introduced. II is able to encode how well
topic modeling matches human common sense. Like the



accuracy metric, II is an extrinsic metric, meaning that it
requires a ground truth to compute. Formally, II is defined
as follows:

Definition 1 (Interpretability indicator): Given the obser-
vation w with the ground truth g and the distribution θ over
K ≥ 2 categories, let θs = (θ1, . . . , θk−1, θk, θk+1, . . . , θK)
denote the sorted proportion satisfying θ1 ≥ · · · ≥ θk−1 ≥
θk ≥ θk+1 ≥ · · · ≥ θK ≥ 0 and

∑K
i=1 θi = 1, and let k ∈

{1, · · · ,K} represent the index of the assignment in θs that
matches g. The interpretability indicator II(θ, g) = II(θs,k)
is defined as:

II(θs,k) =
1

a

(
K−k
K−1 + 1(k=K)

)(
θk
θ1
−
θk+1(k 6=K)

θk
+b

)
(2)

where 1(·) is the indicator function, and a = 2, b = 1 are
normalizing constants.

The indicator II is defined over the per-observation cate-
gory proportion θ, which takes values in the (K−1)-simplex
[13]. The sorted proportion θs is computed through sorting
θ, which is inferred by topic models. In the definition, the
ground truth is represented by its location in θs, i.e., the k-
th most probable assignment in θs matches the ground truth
label. The indicator function 1(·) in Eq. (2) is adopted to
deal with the special case when k = K.

For an observation in an activity recognition task with K
categories, given its ground truth index k and sorted category
proportion θs, we summarize II ’s properties as follows:

Proposition 1 (II ’s properties): The interpretability indi-
cator II(θ, g) = II(θs, k) satisfies the following properties:

1. If k = 1, ∀θs, II(θs, k) ≥ 0.5.
2. If k = K, ∀θs, II(θs, k) ≤ 0.5.
3. ∀θs, II(θs, k) ∈ [0, 1].
4. ∀k ∈ {1, . . . ,K} and θs, θ′s such that θ1 ≥ θ′1, θk = θ′k

and θk+1(k 6=K) = θ′k+1(k 6=K), II(θs, k) ≤ II(θ
′
s, k) holds.

5. ∀k ∈ {1, . . . ,K} and θs, θ′s such that θk+1(k 6=K) ≥
θ′k+1(k 6=K), θ1=θ

′
1 and θk=θ′k, II(θs, k) ≤ II(θ′s, k) holds.

6. ∀k ∈ {1, . . . ,K} and θs, θ′s such that θk ≥ θ′k, θ1 = θ′1
and θk+1(k 6=K) = θ′k+1(k 6=K), II(θs, k) ≥ II(θ

′
s, k) holds.

7. ∀k, k′ ∈ {1, . . . ,K} such that k ≤ k′ < K and ∀θs, θ′s
such that θk = θ′k, θ1 = θ′1 and θk+1(k 6=K) = θ′k+1(k 6=K),
II(θs, k) ≥ II(θ′s, k′) holds.

Proof: In the supplementary material.
The indicator II is able to quantitatively measure how well

topic modeling can match human common sense, because it
captures three essential considerations to simulate the process
of how humans evaluate the category proportion θ:
• A topic model performs better, in general, if it obtains a

larger θk (Property 6). In addition, a larger θk generally
indicates θk is closer to the beginning in θs and further
away from the end (Property 7).
Example: A topic model obtaining the sorted proportion
[0.4, 0.35 , 0.15, 0.10] performs better than a model ob-
taining [0.4, 0.30 , 0.15, 0.15], where the ground truth
is marked with a box, i.e., k = 2 in the example.

• A smaller difference between θk and θ1 indicates better
modeling performance (Properties 4 and 5), in general.
Since the resulting category proportion is sorted, a small

Algorithm 1: Left-to-right Pvwp estimation
Input : w (observation), M (trained topic model), and R

(number of particles)
Output : Pvwp(w|M)

1: Initialize l = 0 and N = |w|;
2: for each position n = 1 to N in w do
3: Initialize pn = 0;
4: for each particle r = 1 to R do
5: for n′ < n do
6: Sample z(r)n′ ∼ P (z

(r)

n′ |wn′ , {z(r)
<n}¬n′ ,M);

7: end
8: Compute pn = pn +

∑
t P (wn, z

(r)
n = t|z(r)<n,M);

9: Sample z(r)n ∼ P (z
(r)
n |wn, z

(r)
<n,M);

10: end
11: Update pn = pn

R
and l = l + log pn;

12: end
13: return Pvwp(w|M) ' l

N
.

difference between θk and θ1 guarantees θk has an even
smaller difference from θ2 to θk−1.
Example: A topic model obtaining the sorted proportion
[0.4, 0.3 , 0.2, 0.1] performs better than the model with
the proportion [0.5, 0.3 , 0.2, 0].

• A larger distinction between θk and θk+1 generally
indicates better modeling performance (Properties 5 and
6), since it better separates the correct assignment from
the incorrect assignments with lower probabilities.
Example: A topic model obtaining the sorted proportion
[0.4, 0.4 , 0.1, 0.1] performs better than the topic model
obtaining the proportion [0.4, 0.4 , 0.2, 0].

The indicator II extends the accuracy metric IA (i.e., rate
of correctly recognized data), as described in Proposition 2:

Proposition 2 (Relationship of II and IA): The accuracy
measure IA is a special case of II(θs, k), when θ1 = 1.0,
θ2 = . . .= θK = 0, and k = 1 or k = K.

Proof: In the supplementary material.

B. Generalizability Indicator

An artificial cognitive model requires the crucial capability
of detecting new situations and being aware that the learned
knowledge becomes less applicable in an online fashion. To
this end, we propose the generalizability indicator (IG), an
intrinsic metric that does not require ground truth to compute
and consequently can be used online.

The introduction of IG is inspired by the perplexity metric
(also referred to as held-out likelihood), which evaluates a
topic model’s generalization ability on a fraction of held-out
instances using cross-validation [15] or unseen observations
[16]. The perplexity is defined as the log-likelihood of words
in an observation [17]. Because different observations may
contain a different number of visual words, we compute the
Per-Visual-Word Perplexity (Pvwp). Mathematically, given
the trained topic model M and an observation w, Pvwp is
defined as follows:

Pvwp(w|M)=
1

N
logP (w|M)=

1

N
log

N∏
n=1

P (wn|w<n,M) (3)



where N = |w| is the number of visual words in w, and the
subscript <n denotes positions before n. Because P (w|M)
is a probability that satisfies P (w|M)≤ 1, it is guaranteed
Pvwp(w|M)≤ 0. The left-to-right algorithm, presented in
Algorithm 1, is used to estimate Pvwp, which is an accurate
and efficient Gibbs sampling method to estimate perplexity
[17]. The algorithm decomposes P (w|M) in an incremental,
left-to-right fashion, where the subscript ¬n is a quantity that
excludes data from the nth position. Given observationsW=
{w1, . . . ,wM}, Pvwp(W|M) is defined as the average of
each observation’s perplexity:

Pvwp(W|M) =
1

M

M∑
m=1

Pvwp(wm|M) (4)

Based on Pvwp, the generalizability indicator IG, on pre-
viously unseen observations in the testing phase or using the
held-out instances in cross-validation, is defined as follows:

Definition 2 (Generalizability indicator): LetM denote a
trained topic model, Wvalid denote the validation dataset that
is used in the training phase, and w be an previously unseen
observation. We define the generalizability indicator:

IG(w)=


exp(Pvwp(w|M))

c · exp(Pvwp(Wvalid|M))

if exp(Pvwp(w|M))<c·exp(Pvwp(Wvalid|M))

1 if exp(Pvwp(w|M))≥c·exp(Pvwp(Wvalid|M))

(5)

where c ∈ [1,∞) is a constant encoding novelty levels.
We constrain IG’s value in the range (0, 1], with a greater

value indicating less novelty, which means an observation
can be better encoded by the training set and the topic model
generalizes better on this observation. The constant c in Eq.
(5) provides the flexibility to encode the degree to which we
consider an observation to be novel.

The indicator IG provides our SRAC model with the
ability to evaluate how well a new observation is represented
by the training data. Since it is impractical, often impossible,
to define an exhaustive training set, mainly because some of
the categories may not exist at the time of training, the ability
to discover novelty and be aware that the learned model is
less applicable is essential for safe, adaptive decision making.

C. Indicator Relationship

While the interpretability indicator interprets human activ-
ity distributions in a way that is similar to human reasoning,
the generalizability indicator endows a co-robot with the self-
reflection capability. We summarize their relationship in the
cases when a training set is exhaustive (i.e., training contains
all possible categories) and non-exhaustive (i.e., new human
behavior occurs during testing), as follows:

Observation (Relationship of IG and II ): Let Wtrain be
the training dataset used to train a topic model, and II and IG
be the model’s interpretability and generalizability indicators.
• IfWtrain is exhaustive, then IG → 1 and II is generally

independent of IG.
• If Wtrain is non-exhaustive, then IG takes values that

are much smaller than 1; II also takes small values and
is moderately to strongly correlated with IG.

This observation answers the critical question of whether a
better generalized topic model can lead to better recognition
performance. Intuitively, if Wtrain is non-exhaustive and a
previously unseen observationw belongs to a novel category,
which is indicated by a small IG value, a topic model trained
onWtrain cannot accurately classifyw. On the other hand, if
w belongs to a category that is known inWtrain, then IG→1
and the recognition performance over w only depends on the
model’s performance on the validation set used in the training
phase. The meaning and relationship of the indicators II and
IG are summarized in Table I, where the gray area denotes
that it is generally impossible for a topic model to obtain a
low generalizability but a high interpretability, as a model is
never correct when presented with a novel activity.

TABLE I
MEANING AND RELATIONSHIP OF II AND IG . THE GRAY AREA

DENOTES THAT THE SITUATION IS GENERALLY IMPOSSIBLE.

IG: low IG: high
II : low Category is novel

Model is not applicable
Category is not novel
Model is not well interpreted

II : high Category is not novel
Model is well interpreted

IV. SELF-REFLECTIVE RISK-AWARE DECISION MAKING

Another contribution of this research is a decision making
framework that is capable of incorporating activity category
distribution, robot self-reflection (enabled by the indicators),
and co-robot action risk, which is realized in the module of
Decision Making in Fig. 1. Our new self-reflective risk-aware
decision making algorithm is presented in Algorithm 2.

Given the robot action set a = {a1, . . . , aS} and the hu-
man activity set z = {z1, . . . , zK}, an action-activity risk rij
is defined as the amount of discomfort, interference, or harm
that can be expected to occur during the time period if the
robot takes a specific action ai,∀i ∈ {1, . . . , S} in response
to an observed human activity zj ,∀j ∈ {1, . . . ,K}. While θ
and IG are computed online, the risks r = {rij}S×K , with
each element rij ∈ [0, 100], are manually estimated off-line
by domain experts and used as a prior in the decision making
module. In practice, the amount of risk is categorized into a
small number of risk levels for simplicity’s sake. To assign
a value to rij , a risk level is first selected. Then, a risk value
is determined within that risk level. As listed in Table II, we
define four risk levels with different risk value ranges in our
application. We intentionally leave a five-point gap between
critical risk and high risk to increase the separation of critical
risk from high risk actions.

TABLE II
RISK LEVELS AS PRIOR KNOWLEDGE TO OUR COGNITIVE MODEL.

Levels Values Definition
Low risk [1,30] Unsatisfied with the robot’s performance.
Medium risk [31,60] Annoyed or upset by the robot’s actions.
High risk [61,90] Interfered with, interrupted, or obstructed.
Critical risk [95,100] Injured or worse (i.e., a safety risk).



Fig. 2. An illustrative example of a bipartite network (left) and the per-
observation activity distribution (right) in assistive robotics applications.

A bipartite network N ={a, z, r} is proposed to graphi-
cally illustrate the risk matrix r of robot actions a associated
with human activities z. In this network, vertices are divided
into two disjoint sets a and z, such that every edge with a
weight rij connects a vertex ai ∈ a to a vertex zj ∈ z.
An example of such a bipartite network is depicted in Fig.
2 for assistive robotics applications. The bipartite network
also has a tabular representation (for example, in Table III).
Given the bipartite network, for a new observation w, after
θ and IG(w) are computed in the probabilistic reasoning
module, the robot action a? ∈ a is selected according to:

a?= argmin
ai:i=1,...,S

(
1−IG(w)

K
·

K∑
j=1

rij + IG(w)·
K∑

j=1

(θj ·rij)

)
(6)

The risk of taking a specific robot action is determined by
two separate components: activity-independent and activity-
dependent action risks. The activity-independent risk (that is
1
K

∑K
j=1 rij) measures the inherent risk of an action, which

is independent of the human activity context information, i.e.,
computing this risk does not require the category distribution.
For example, the robot action “standing-by” generally has a
smaller risk than “moving backward” in most situations. The
activity-dependent risk (that is

∑K
j=1 (θj ·rij)) is the average

risk weighted by context-specific information (i.e., the human
activity distribution). The combination of these two risks is
controlled by IG, which automatically encodes preference
over robot actions. When the learned model generalizes well
over w, i.e., IG(w)→1, the decision making process prefers
co-robot actions that are more appropriate to the recognized
human activity. Otherwise, if the model generalizes poorly,
indicating new human activities occur and the learned model
is less applicable, our decision making module would ignore
the recognition results and select co-robot actions with lower
activity-independent risk.

V. EXPERIMENTS

To evaluate the performance of the proposed SRAC model,
we use three real-world benchmark human activity datasets:
the Weizmann [18], KTH [19], and UTK3D datasets [10].
We also demonstrate our cognitive model’s effectiveness in a
human following task using a real autonomous mobile robot.

Algorithm 2: Self-reflective risk-aware decision making
Input : w (observation), M (trained topic model), and N

(decision making bipartite network)
Output : a? (Selected robot action with minimum risk)

1: Estimate per-observation activity proportion θ of w;
2: Compute generalizability indicator IG(w);
3: for each robot action i = 1 to S do
4: Estimate activity-independent risk: rini = 1

K

∑K
j=1rij ;

5: Calculate activity-dependent risk: rdei =
∑K

j=1(θj · rij);
6: Combine activity-independent and dependent risks, and

assign to per-observation action risk vector:
ra(i) = (1− IG(w)) · rini + IG(w) · rdei ;

7: end
8: Select optimal robot action a? with minimum risk in ra;
9: return a?.

We validate our SRAC model over multiple standard visual
features, including the space-time interest points (STIP) [20],
histogram of oriented gradients (HOG) [19], and histogram
of optical flow (HOF) features [19] for color or depth data,
as well as the 4-dimensional local spatio-temporal features
(4D-LSTF) [10] for RGB-D data. The k-means approach is
applied to construct a dictionary and convert the features to
a BoW representation for each observation [10].

A. Activity Recognition

We first evaluate the SRAC model’s capability to recognize
human activities using the interpretability indicator II , when
the training set is exhaustive. In this experiment, each dataset
is split into disjoint training and testing sets. We randomly
select 75% of data instances in each category as the training
set, and employ the rest of the instances for testing. During
training, fourfold cross-validation is used to estimate model
parameters. Then, the interpretability of the topic model is
computed using the testing set, which is fully represented by
the training set and does not contain novel human activities.
This training-testing process is repeated five times to obtain
reliable results.

Experimental results of the interpretability and its standard
deviation versus the dictionary size are illustrated in Fig. 3.
Our SRAC model obtains promising recognition performance
in terms of interpretability: 0.989 is obtained using the STIP
feature and a dictionary size 1800 on the Weizmann dataset,
0.952 using the STIP feature and a dictionary size 2000 on
the KTH dataset, and 0.936 using the 4D-LSTF feature and a
dictionary size 1600 on the UTK3D dataset. In general, STIP
features perform better than SIFT features for color data, and
4D-LSTF features perform the best for RGB-D visual data.
The dictionary size in the range [1500, 2000] can generally
result in satisfactory human activity recognition performance.
The results are also very consistent, as illustrated by the small
error bars in Fig. 3, which demonstrates our interpretability
indicator’s consistency.

The model’s interpretability is also evaluated over different
activity categories using the UTK3D dataset, which includes
more complex activities (i.e., sequential activities) and con-
tains more information (i.e., depth). It is observed that topic



(a) Weizmann dataset (b) KTH dataset (c) UTK3D dataset

Fig. 3. Variations of model interpretability and its standard deviation versus dictionary size using different visual features over benchmark datasets.

Fig. 4. Model interpretability over the activities in the UTK3D dataset using different features and a dictionary size of 1600.

modeling’s interpretability varies for different activities. This
performance variation is affected by three main factors: the
topic model’s modeling ability, feature and BoW’s repre-
sentability, and human activity complexity and similarity. For
example, since the LDA topic model and SIFT features are
not capable of modeling time, the reversal human activities
including “lifting a box” and “removing a box” in the
UTK3D dataset cannot be well distinguished, as illustrated
in Fig. 4. Since sequential activities (e.g., “removing a box”)
are more complex than repetitive activities (e.g., “waving”),
they generally result in low interpretability. Since “pushing”
and “walking” are similar, which share motions such as
moving forward, they can also reduce interpretability. This
observation provides general guidance for designing future
recognition systems with the SRAC model.

B. Knowledge Discovery

We evaluate the SRAC model’s capability to discover new
situations using the generalizability indicator IG, when the
training dataset is non-exhaustive (i.e., new human activities
occur during testing). A non-exhausted setup is created by
dividing the used benchmark datasets as follows. We place
all data instances of one activity in the unknown testing set,
and randomly select 25% of the instances from the remaining
activities in the known testing set. The remaining instances
are placed in the training set for learning, based on fourfold

cross-validation. To evaluate the model’s ability to discover
each individual human activity, given a dataset that contains
K activity categories, the experiments are repeated K times,
each using one category as the novel activity. Visual features
that achieve the best model interpretability over each dataset
are used in this set of experiments i.e., STIP features for the
Weizmann and KTH datasets and 4D-LSTF features for the
UTK3D dataset.

Variations of Pvwp values versus the dictionary size over
the validation set (in cross-validation), known testing set, and
unknown testing set are shown in Fig. 5. Several important
phenomena are observed. First, there exists a large Pvwp
gap between the known and unknown testing sets, as shown
by the gray area in the figure, indicating that topic models
generalize differently over data instances from known and
unknown activities. A better generalization result indicates a
less novel instance, which can be better represented by the
training set. Since data instances from the known testing and
validation sets are well represented by the training set, the
Pvwp gap between them is small. As shown in Fig. 5(a), it
is possible that the known testing set’s Pvwp value is greater
than the Pvwp value of the validation set, if its data instances
can be better represented by the training set. Second, Fig.
5 shows that the gap’s width varies over different datasets:
the Weizmann dataset generally has the largest Pvwp gap,
followed by the KTH dataset, and then the UTK3D dataset.



400 600 800 1000 1200 1400 1600 1800 2000
-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

Dictionary size

P
vw

p

 

 

Pvwp gap
Unknown testing set
Known testing set
Validation set

(a) Weizmann dataset + STIP features
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(b) KTH dataset + STIP features
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(c) UTK3D dataset + 4D-LSTF features

Fig. 5. Variations of topic modeling’s Pvwp versus dictionary size over validation set, known and unknown testing sets.
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(a) Weizmann dataset
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(b) KTH dataset
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(c) UTK3D dataset

Fig. 6. Variations of our model’s generalizability versus dictionary size over known and unknown testing sets for all datasets.

The gap’s width mainly depends on the observation’s novelty,
in terms of the novel activity’s similarity to the activities in
the training dataset. This similarity is encoded by the portion
of overlapping features. A more novel activity is generally
represented by a set of more distinct visual features with less
overlapping with the features existing during training, which
generally results in a larger gap. For example, activities in
the Weizamann dataset share fewer motions and thus contain
a less number of overlapping features, which leads to a larger
gap. Third, when the dictionary size increases, the model’s
Pvwp values decrease at a similar rate. This is because in
this case, the probability of a specific codeword appearing in
an instance decreases, resulting in a decreasing Pvwp value.

The generalizability indicator IG’s characteristics are also
empirically validated on the known and unknown testing sets,
as illustrated in Fig. 6. An important characteristic of IG is
its invariance to dictionary size. Because Pvwp over testing
and validation sets has similar decreasing rate, the division
operation in Eq. (5) removes the variance to dictionary size.
In addition, a more novel activity generally leads to a smaller
IG value. For example, the Weizmann dataset has a smaller
IG value over the unknown testing set, because its activities
are more novel in the sense that they share less overlapping
motions. In general, we observe IG is smaller than 0.5 for
unknown activities and greater than 0.7 for activities that are
included in training sets. As indicated by the gray area in
Fig. 6, similar to Pvwp, there exists a large gap between the
IG values over the unknown and known testing datasets. The
average IG gap across different dictionary sizes is 0.69 for
the Weizmann dataset, 0.48 for the KTH dataset, and 0.36
for the UTK3D dataset. This reasoning process, based on IG,

(a) Falling (b) Turning (c) Walking

Fig. 7. Experiment setup for validating the SRAC model’s decision making
ability in a human following task using a Turtlebot 2 robot.

provides a co-robot with the critical self-reflection capability,
and allows a robot to reason about when new situations occur
as well as when the learned model becomes less applicable.

C. Decision Making

We assess our SRAC model’s decision making capability
using a Turtlebot 2 robot in a human following task, which
is important in many human-robot teaming applications. In
this task, a robotic follower needs to decide at what distance
to follow the human teammate. We are interested in three
human behaviors: “walking” in a straight line, “turning,” and
“falling.” With perfect perception and reasoning, i.e., a robot
always perfectly interprets human activities, we assume the
ideal robot actions are to “stay far from the human” when
he or she is walking in a straight line (to not interrupt the
human), “move close to the human” when the subject is
turning (to avoid losing the target), and “stop beside the
human” when he or she is falling (to provide assistance).

In order to qualitatively assess the performance, we collect
20 color-depth instances from each human behaviors to train



TABLE III
THE RISK MATRIX USED IN THE ROBOT FOLLOWING TASK.

Robot Actions Falling Turning Walking
Stay besides humans 0 20 50

Move close 90 0 20
Stay far away 95 80 0

the SRAC model, using a BoW representation based on 4D-
LSTF features. The risk matrix used in this task is presented
in Table III. We evaluate our model in two circumstances.
Case1: exhaustive training (i.e., no unseen human behaviors
occur in testing). In this case, the subjects only perform the
three activities during testing with small variations in motion
speed and style. Case2: non-exhaustive training (i.e., novel
movements occur during testing). In this case, the subjects
not only perform the activities with large variations, but also
add additional movements (such as jumping and squatting)
which are not observed in the training phase. During testing,
each activity is performed 40 times. The model performance
is measured using failure rate, i.e., the percentage with which
the robot fails to stop besides to help the human or loses the
target.

Experimental results are presented in Table IV, where the
traditional methodology, which selects the co-robot actions
only based on the most probable human activity, is used
as a baseline for comparison. We observe that the proposed
SRAC model significantly decreases the failure rate in both
exhaustive and non-exhaustive setups. When the training
set is exhaustive and no new activities occur during testing
(Case1), the results demonstrate that incorporating human
activity distributions and robot action risks improves decision
making performance. When the training set is non-exhaustive
and new activities occur during testing (Case2), the SRAC
model significantly outperforms the baseline model. In this
situation, if IG has a very small value, according to Eq. 6, our
model tends to select safer robot actions, i.e., “stay beside
humans,” since its average risk is the lowest, which is similar
to the human common practice “playing it safe in uncertain
times.” The results show the importance of self-reflection for
decision making especially under uncertainty.

TABLE IV
FAILURE RATE (%) IN EXHAUSTIVE (CASE 1) AND NON-EXHAUSTIVE

(CASE 2) EXPERIMENTAL SETTINGS.

Exp. settings Models Fail to assist Fail to follow
Exhaustive Baseline 10.5% 15%
(Case1) SRAC 0.5% 5.5%

Non-exhaustive Baseline 45.5% 60%
(Case2) SRAC 24.5% 35.5%

VI. CONCLUSION

In this paper, we propose a novel self-reflective risk-aware
artificial cognitive model based on topic modeling. Two new
indicators are introduced and combined in the SRAC model.
The interpretability indicator generalizes the accuracy metric
and enables a robot to interpret category distributions in a

similar fashion to humans. By considering this distribution,
our model is also able to incorporate robot action risks. The
generalizability indicator measures how well an observation
can be represented by the learned knowledge, which allows
for self-reflection that can enable the SRAC model to identify
new scenarios. Through incorporating robot action risks (by
reasoning about category distributions) and the self-reflection
ability (realized by the generalizability indicator), our model
makes better decisions that can more appropriately respond
to human behaviors, which is validated in experiments both
using benchmark datasets and on real robots.
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