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Abstract— Robot awareness of human actions is an essential
research problem in robotics with many important real-world
applications, including human-robot collaboration and teaming.
Over the past few years, depth sensors have become a standard
device widely used by intelligent robots for 3D perception, which
can also offer human skeletal data in 3D space. Several methods
based on skeletal data were designed to enable robot awareness
of human actions with satisfactory accuracy. However, previous
methods treated all body parts and features equally important,
without the capability to identify discriminative body parts and
features. In this paper, we propose a novel simultaneous Feature
And Body-part Learning (FABL) approach that simultaneously
identifies discriminative body parts and features, and efficiently
integrates all available information together to enable real-time
robot awareness of human behaviors. We formulate FABL as a
regression-like optimization problem with structured sparsity-
inducing norms to model interrelationships of body parts and
features. We also develop an optimization algorithm to solve the
formulated problem, which possesses a theoretical guarantee to
find the optimal solution. To evaluate FABL, three experiments
were performed using public benchmark datasets, including
the MSR Action3D and CAD-60 datasets, as well as a Baxter
robot in practical assistive living applications. Experimental
results show that our FABL approach obtains a high recognition
accuracy with a processing speed of the order-of-magnitude of
104 Hz, which makes FABL a promising method to enable real-
time robot awareness of human behaviors in practical robotics
applications.

I. INTRODUCTION

In a wide variety of human-centered robotics applications,
including human-robot teaming, human-robot collaboration,
and robot-assisted living, robot awareness of human actions
(or behaviors) is essential for intelligent robots to under-
stand humans, make situationally appropriate decisions, and
interact with and assist people. However, robot awareness of
human behaviors in real-world environments is a challenging
problem caused by significant variations of human motion,
diversity of human appearance, and vision difficulties, in-
cluding illumination variations and occlusion. When imple-
mented on robots, additional challenges are encountered,
such as uncertainty in movement and dynamic backgrounds;
Most importantly, the requirement of real-time performance
demands timely robot planning and decision making.
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(a) Skeletal data (b) Discriminative features and body parts

Fig. 1. A motivating example of the FABL approach, which simultaneously
learns discriminative skeleton joints and multimodal heterogeneous features
to enable real-time robot awareness of human behaviors.

Although human action understanding has been researched
in robotics and computer vision communities, most previous
techniques are based on local spatio-temporal visual features
[1], [2], which are generally incapable of dealing with the
challenges introduced by robotics applications (e.g., real-time
performance). With the emergence of affordable structured-
light or time-of-flight depth sensing technologies, color-depth
cameras have generally become a standard 3D visual sensing
device for modern indoor robots. The skeletal data of humans
acquired from such sensors, as shown in Fig. 1(a), provides
the possibility to achieve real-time robot awareness of human
behaviors [3], which also provides benefits in comparison to
local features, including the invariance to viewpoint, human
body scale and motion speed [4], [5].

Because of these advantages, skeleton-based action un-
derstanding methods have attracted increasing attention, and
many skeletal features and representations have been im-
plemented during the last few years , see [4] and refer-
ences therein, i.e. joint rotation matrix [6], BIPOD [5], etc.
However, most existing methods apply only one type of
skeletal feature [7], [6], while others simply concatenate
several types of skeletal features together into a single bigger
vector to encode human actions [8], [9]. The problem of
autonomously learning the importance of skeletal features
and optimally integrating the multimodal features (different
human activity representations extracted from skeletal data)
together has not yet been well addressed for real-time robot
awareness of human behaviors. Recently, methods based on
body parts (represented as joints in skeletal data) instead of
using complete skeleton data were studied to improve action
recognition accuracy [5], [10], [11]. To remove irrelevant
joints for specific behaviors, these methods use a subset of
or select skeletal joints. Although these methods obtained
promising accuracy, the selection is manual based upon fixed
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criteria and is not robust to various scenarios. Furthermore,
the question of how to integrate multimodal skeletal features
into body-part methods has not been well answered.

In this paper, we introduce a novel Feature And Body-part
Learning (FABL) method to enable real-time robot aware-
ness of human behaviors, through learning discriminative
skeletal features and body parts simultaneously in the same
optimization framework. For learning the importance of body
parts, our approach is inspired by the insight that typically a
subset of body parts are more discriminative to recognize an
action. For example, as demonstrated in Fig. 1(b), only the
waving arm and hand are important for the action of “hand
waving.” Our FABL method is able to select discriminative
body parts automatically for different behaviors. Simultane-
ously, FABL learns the importance of heterogeneous skeletal
features, and integrates multimodal features to build a more
discriminative representation to enable robot awareness of
human behaviors. Classification is seamlessly integrated in
the FABL approach (i.e., no external classifier is required),
which further increases processing efficiency, resulting in
high-speed performance that is suitable for applications with
real-time requirements.

The contributions of this paper are twofold:
• We propose a novel formulation and the FABL approach

to perform simultaneous learning of discriminative body
parts and skeletal features for real-time robot awareness
of human behaviors.

• We develop a new optimization algorithm to efficiently
solve the formulated robot learning problem, which has
a theoretical guarantee to converge to the global optimal
solution.

We make the code that implements our FABL approach avail-
able at: http://hcr.mines.edu/code/FABL.html.

The remainder of this paper is structured as follows.
Related work is described in Section II. Then, our FABL
approach is detailed in Sections III and IV. Experimental
results are presented in Section V. After discussing several
attributes of the proposed FABL method in Section VI, we
conclude this paper in Section VII.

II. RELATED WORK

In this section, we conduct a review of techniques to
understand human actions using skeletal data, including both
complete skeletal data and partial body parts.

A. Behavior Understanding Based on Skeletal Data

Methods using 3D skeletal data to identify human actions
attracted increasing attention after the release of the afford-
able structured-light 3D sensing technology [4]. A widely
applied representation for human action understanding is
based on skeletal joint displacements. Chen and Koskela [12]
implemented a feature extraction method based on pairwise
relative position of skeletal joints with normalization, and ac-
tions were classified by multiple extreme learning machines.
Wei et al. [13] implemented a hierarchical graph to represent
spatio-temporal joint positions and displacements, where the
differences in skeletal joint positions between two successive

frames were defined as features. Besides joint displacements,
many methods based on joint orientations were also imple-
mented. Sung et al. [6] computed the orientation matrix of
each joint with respect to the camera, then transformed the
matrix to obtain this joint orientation with respect to the
human torso, showing their representation was invariant to
the sensor’s location. Another popular category of skeleton-
based methods directly use raw joint position information
for human action understanding. Wei et al. [14] developed
wavelet features to represent a sequence of 3D skeletal joints,
and a concurrent action detection model to understand human
behaviors.

Most of the previous skeleton-based methods utilized
only one category of skeleton-based features. Several recent
studies indicate that recognition accuracy can be improved
by combining multiple skeletal features together. A feature
construction approach was introduced in [7] that concate-
nates static posture, movement, and offset values into a single
bigger feature vector, and utilizes a naive Bayes classifier
to perform multi-class action classification. Yu et al. [15]
used three categories of skeletal features, including pairwise
joint distance, spatial joint coordinate, and temporal variation
of joint locations, to construct a mixed representation. A
similar skeleton-based representation was implemented by
[16], incorporating pairwise joint distances and temporal
joint location changes together. However, most previous tech-
niques simply concatenated different categories of features
without considering the importance of each skeletal feature
category. The research problem of how to autonomously
learn and fuse heterogeneous skeletal features for real-time
robot awareness of human actions has not yet been well
studied.

The proposed FABL approach addresses this problem
by integrating heterogeneous multimodal skeletal features
through learning the importance of each feature category,
along with learning discriminative body parts, to accurately
interpret human actions.

B. Representation Based on Body Parts

Skeletal human representations based on body part models
have been widely studied in the past few years. Because these
mid-level body part models can partially take into account the
physical structure of human body, they can yield improved
discrimination power to represent humans [5].

Wang et al. [17] implemented a method that decomposed
a body model into five parts, including left/right arms/legs
and the torso, each consisting of a set of joints, to rep-
resent human behaviors in space and time dimensions. A
spatial-temporal And-Or graph model was implemented in
[18] to represent humans at three levels including poses,
spatiotemporal-parts, and parts. The hierarchical human body
structure captures the geometric and appearance variation of
humans at each frame. A deep neural network was introduced
in [19] to create a body part model and the correlation
of body parts was investigated, which can automatically
obtain mid-level features that were more descriptive than
low-level features extracted from individual human skeleton
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joints. Several methods were also proposed to select more
descriptive human body joints [2], [10], [11], [20], [21], [22],
[23].

Bio-inspired body part models are also commonly applied
to extract mid-level features for skeleton-based representa-
tion construction, which are typically based on body kine-
matics or human anatomy. Chaudhry et al. [24] implemented
bio-inspired mid-level features to represent human activities
based on 3D skeleton data, by leveraging the findings in the
research area of static shape encoding in the primate cortex’s
neural pathway. By showing different 3D shapes to primates
and measuring their neural responses, the primates’ internal
shape representation was estimated, which was then used to
extract body parts to create skeleton-based representations.
Zhang and Parker [5] proposed a new bio-inspired predictive
orientation decomposition representation, which was inspired
by the biological research in human anatomy. This approach
decomposed a body model into five body parts, and projected
3D human skeleton trajectories onto three anatomical planes.
Through estimating future skeleton trajectories, this method
is able to predict future human motions.

Despite the promising results obtained by the methods
based on body parts, which mutually partition the body
model into several body parts or select a set of skeletal
joints according to predefined criteria, previous techniques
did not model the discrimination difference of human joints
but simply include or exclude certain joints. In this paper,
we introduce a new approach to automatically learn discrim-
inative skeletal joints without predefined manual selection
criteria.

III. THE FABL APPROACH

In this section, we describe our FABL method that simulta-
neously learns discriminative skeletal features and body parts
to enable real-time robot awareness of human behaviors.

Notation. In this paper, we denote matrices using boldface
capital letters, and vectors using boldface lowercase letters.
We represent the `1-norm of a vector v ∈ <n using ‖v‖1 =∑n

i=1 |vi|, and the `2-norm of v as ‖v‖2 =
√
v>v. Given a

matrix M={mij} ∈ <m×n, we refer to its i-th row as mi

and the j-th column as mj . We denote the Frobenius norm
of the matrix M as ‖M‖F =

√∑m
i=1

∑n
j=1m

2
ij .

A. Problem Formulation

Given a collection of n data instances, the skeletal matrix
is denoted as X = [x1, · · · ,xn] ∈ <d×n, where xi ∈ <d is
the vector of all skeletal features for the i-th data instance.
When heterogeneous skeletal features are used, each vector
xi ∈ <d consists of m modalities such that d =

∑m
j=1 dj .

Within each modality, the skeletal features are further divided
into s partitions, and each partition contains features from a
skeleton joint. Then, we formulate robot awareness of human
behaviors as a problem of dividing {xi}ni=1 into c behavior
categories through exploiting all available information from
heterogeneous feature modalities and skeleton joints, using

a regression-like classification objective as follows:

min
W
‖X>W + 1nb

> −Y‖2F , (1)

where 1n ∈ <n×1 is the constant vector of all 1’s, b ∈ <c×1

is the intercept vector, Y = [y1, · · · ,yn]
> ∈ <n×c denotes

the behavior category indicator matrix, and yi ∈ <c denotes
the category indicator vector for the feature vector xi with
yij indicating how likely xi belongs to the j-th category. The
label matrix Y of the data instances is given in the training
phase. Then, the value of b in Eq. (1) can be calculated by
b = Y>1n/n.

The solution of the optimization problem in Eq. (1) is the
parameter matrix W = [w1,w2, . . . ,wc] ∈ <d×c, which
contains the weights wi ∈ <d of each feature modality and
skeletal joint with respect to the i-th behavior category. The
parameter matrix W is denoted as:

W =

 w1
1 · · · w1

c
...

. . .
...

wm
1 · · · wm

c

 , (2)

where wq
p ∈ <dq indicates the weights of the q-th modality

including all skeleton joints with respect to the p-th behavior
category, which is denoted as wq

p =
[
wq1

p ;wq2

p ; · · · ;wqs

p

]
,

and wqr

p ∈ <dqr represents the weights of the r-th skeleton
joint within the q-th modality with respect to the p-th human
behavior category, where dqr is the dimension of features that
are obtained from the r-th skeleton joint in the q-th modality,
satisfying

∑s
r=1 dqr = dq , and s is the number of skeleton

joints in each modality. An illustration of the weight matrix
is presented in Fig. 2.

Fig. 2. Illustration of the structured sparsity-inducing norms introduced in
our FABL method. Given the parameter matrix W = [w1,w2, . . . ,wc] ∈
<d×c, we arrange each column vector wi of the i-th action category into a
matrix, where rows represent modalities and columns denote skeletal joints.
We model the interrelationships of the feature modalities using the M1-
norm regularization term, and the interrelationships of the skeletal joints
using the J1-norm regularization to model the representative joints.

B. Learning of Discriminative Body Parts

For specific behaviors, a small set of body parts (rep-
resented as joints in human skeletal data) are more dis-
criminative than others. For example, in the behavior of
hand waving as depicted in Fig. 1(b), the forehand and
hand joints are more discriminative. Such discriminative
human skeletal joints are typically not shared by all behavior
categories (i.e. the joints to recognize waving and kicking are



substantially different). To learn discriminative body parts,
we introduce a new joint-based group `1-norm (named J1-
norm) as a regularizer of the problem in Eq. (1). The J1-norm
is mathematically defined as ‖W‖J1

=
∑c

i=1

∑s
k=1 ‖w̃k

i ‖2,
where w̃k

i ∈ <dk denotes the weights of the k-th human
skeletal joint with respect to the i-th behavior category
for all feature modalities, which is expressed as w̃k

i =[
w1k

i ;w2k

i ; · · · ;wmk

i

]
, and

∑s
k=1 dk = d. Then, we can

rewrite the objective function as:

min
W
‖X>W + 1nb

> −Y‖2F + γ‖W‖J1 . (3)

where γ is a trade-off hyperparameter.
The J1-norm applies the `2-norm within each skeletal joint

and the `1-norm between the joints, which enforces sparsity
among different joints. For example, if the skeletal features
obtained from a human skeleton joint are not discriminative
for a specific behavior category, the objective in Eq. (3) will
assign zeros (in the ideal case, usually very small values) to
them for this behavior category; otherwise, their weights have
large values. As shown in Fig. 2, the J1-norm regularization
term captures the interrelationship among body parts, and
estimates the importance of each body part to identify certain
human behaviors.

C. Learning of Multimodal Skeletal Features

When heterogeneous multimodal features are available, it
is well accepted that different types of skeletal features show
varying performance on recognizing different behaviors [4].
That is, the features from a specific modality can be more or
less discriminative for recognizing specific human behaviors.
For example, comparing to pose features, motion features are
generally less helpful to identify a still human behavior such
as sitting. To integrate multiple feature modalities and model
their interrelationships, we introduce another group `1-norm
(M1-norm) as a new regularizer in Eq. (3), which is defined
as ‖W‖M1

=
∑c

i=1

∑m
j=1 ‖w

j
i ‖2. Then, incorporating both

multi-feature and multi-joint group sparsity-inducing norms,
the final objective function becomes:

min
W
‖X>W + 1nb

> −Y‖2F +γ1‖W‖M1
+γ2‖W‖J1

. (4)

where γ1 and γ2 are trade-off hyperparameters.
The M1-norm uses the `2-norm within each feature modal-

ity and the `1-norm between these modalities, which enforces
the sparsity of these modalities. For example, if a modality
is not discriminative enough to recognize a certain behavior
category, the objective in Eq. (4) will assign zeros (in
the ideal case, usually very small values) to the features
within this modality with respect to the behavior category;
otherwise, their weights are large. As demonstrated in Fig
2., the proposed M1-norm regularization term captures the
interrelationship between feature modalities and estimates
their importance to recognize certain behaviors.

D. Human Behavior Understanding

After solving the optimization problem in Eq. (4) during
the training phase (solution is detailed in Section IV), we can

obtain the optimal weight matrix W∗ = [w∗1,w
∗
2, . . . ,w

∗
c ] ∈

<d×c. Then, in the testing phase, given a new multisensory
instance x ∈ <d, its behavior category y(x) is decided by:

y(x) = argmax
i

x>w∗i + bi, i = 1, 2, ..., c. (5)

An advantage of our formulation utilizing the regression-
like objective function is that classification is integrated
with feature learning; thus, we do not require additional
classifiers (e.g., SVMs). This significantly improves process-
ing efficiency, resulting in high-speed recognition of human
behaviors that can benefit real-time human-centered robotics
applications.

IV. OPTIMIZATION ALGORITHM

Since the objective in Eq. (4) comprises two non-smooth
regularization terms: the M1-norm and J1-norm, it is difficult
to solve in general. To this end, we implement a new iterative
algorithm to solve the optimization problem in Eq. (4) with
non-smooth regularization terms. The proposed optimization
solver has a theoretical guarantee to find the optimal solution.

To learn the value of the weight matrix W, we compute
the derivative of the objective with respect to wi (1 ≤ i ≤ c)
and set it to zero vector. Then, we obtain

XX>wi −X(yi − bi) + γ1D
iwi + γ2D̃

iwi = 0, (6)

where Di(1 ≤ i ≤ c) is a block diagonal matrix with the j-
th diagonal block as 1

2‖wj
i‖2

Ij , wj
i is the j-th segment of wi

consisting of the weights of the j-th feature, D̃i is a diagonal
matrix with the k-th diagonal block as 1

2‖w̃k
i ‖2

Ik, w̃k
i is the

k-th segment of wi including the weights of skeletal features
calculated from the k-th skeleton joint, and Ij is the identity
matrix of size dj . Thus we have

wi = (XX> + γ1D
i + γ2D̃

i)−1X(yi − bi). (7)

Both Di and D̃i are dependent on W and thus also unknown
variables. An iterative algorithm is implemented to solve this
problem, which is described in Algorithm 1.

Before analyzing convergence of Algorithm 1, we describe
a lemma from [25] as follows.

Lemma 1: Given vectors a and b, the following equation
holds

‖a‖2 −
‖a‖22

2‖b‖2
≤ ‖b‖2 −

‖b‖22
2‖b‖2

(8)

Theorem 1: Algorithm 1 converges to the optimal solution
to the optimization problem in Eq. (4).

Proof: According to Step 3 of Algorithm 1, we know

W(t+ 1) = argmin
W

‖X>W + 1nb
> −Y‖2F (9)

+γ1

c∑
i=1

w>i D
i(t+ 1)wi + γ2

c∑
i=1

w̃>i D̃
i(t+ 1)w̃i.



Then, we can derive that

J (t+ 1) + γ1

c∑
i=1

w>i (t+ 1)Di(t+ 1)wi(t+ 1)

+γ2

c∑
i=1

w̃>i (t+ 1)D̃i(t+ 1)w̃i(t+ 1)

≤ J (t) + γ1

c∑
i=1

w>i (t)Di(t+ 1)wi(t)

+γ2

c∑
i=1

w̃>i (t)D̃i(t+ 1)w̃i(t), (10)

where J (t) = ‖X>W(t) + 1nb
> −Y‖2F .

After substituting the definition of Di and D̃i, we obtain

J (t+ 1) + γ1

c∑
i=1

m∑
j=1

‖wj
i (t+ 1)‖22

2‖wj
i (t)‖2

+γ2

c∑
i=1

s∑
k=1

‖w̃k
i (t+ 1)‖22

2‖w̃k
i (t)‖2

≤ J (t) + γ1

c∑
i=1

m∑
j=1

‖wj
i (t)‖22

2‖wj
i (t)‖2

+γ2

c∑
i=1

s∑
k=1

‖w̃k
i (t)‖22

2‖w̃k
i (t)‖2

. (11)

From Lemma 1, we can derive
m∑
j=1

‖wj
i (t+ 1)‖2 −

m∑
j=1

‖wj
i (t+ 1)‖22

2‖wj
i (t)‖2

≤

m∑
j=1

‖wj
i (t)‖2 −

m∑
j=1

‖wj
i (t)‖22

2‖wj
i (t)‖2

, (12)

and
s∑

k=1

‖w̃k
i (t+ 1)‖2 −

s∑
k=1

‖w̃k
i (t+ 1)‖22

2‖w̃k
i (t)‖2

≤

s∑
k=1

‖w̃k
i (t)‖2 −

s∑
k=1

‖w̃k
i (t)‖22

2‖w̃k
i (t)‖2

. (13)

Adding Eqs. (11)-(13) on both sides, we obtain

J (t+ 1) + γ1

c∑
i=1

m∑
j=1

‖wj
i (t+ 1)‖2 (14)

+γ2

c∑
i=1

s∑
k=1

‖w̃k
i (t+ 1)‖2

≤ J (t) + γ1

c∑
i=1

m∑
j=1

‖wj
i (t)‖2 + γ2

c∑
i=1

s∑
k=1

‖w̃k
i (t)‖2.

Therefore, Algorithm 1 decreases the objective value in each
iteration. Since the optimization problem defined in Eq. (4)
is convex, and the objective is lower-bounded by zero due to
the definition of matrix and vector norms, thus the algorithm
converges to the optimum.

Algorithm 1: An iterative algorithm to solve the problem
in Eq. (4)

Input : X = [x1, · · · ,xn] ∈ <d×n and
Y = [y1, · · · ,yn]

> ∈ <n×c

1 Let t = 1. Initialize W(t) by solving
min
W
‖X>W + 1nb

> −Y‖2F .

2 while not converge do
3 Calculate the block diagonal matrix

Di(t+ 1)(1 ≤ i ≤ c), where the j-th diagonal
block of Di(t+ 1) is 1

2‖wj
i (t)‖2

Ij .
Calculate the block diagonal matrix
D̃i(t+ 1)(1 ≤ i ≤ c), where the k-th diagonal
block of D̃i(t+ 1) is 1

2‖w̃k
i (t)‖2

Ik.
4 For each wi(1 ≤ i ≤ c), wi(t+ 1) =

(XX>+γ1D
i(t+ 1) +γ2D̃

i(t+ 1))−1X(yi−bi).
5 t = t+ 1.

Output: W = W(t) ∈ <d×c

V. EXPERIMENTS

To quantitatively assess the performance of the proposed
FABL method, we conduct experiments using public bench-
mark datasets. Furthermore, to evaluate the benefits of our
FABL method in real-world robotics applications, we deploy
FABL on a Baxter robot to perform online, real-time behav-
ior recognition for human-robot interaction.

A. Implementation

Our FABL approach is implemented using a combination
of Matlab and C++ on a Linux machine with an i7 3.4GHz
CPU and 16GB memory. The Matlab code is used to validate
our approach on two public datasets: MSR Action3D Dataset
[26] and Cornell Activity Dataset [6], while the C++ program
is employed for validation on a Baxter robot in a real-world
“serving drinks” task.

We intentionally designed and applied four simple skeletal
features to emphasize the performance gain resulted from our
FABL method instead of sophisticated features. These simple
skeletal features include: (1) spatial joint displacement that is
the 3D coordinate difference of each body part with respect
to the torso: (∆x,∆y,∆z) = (x, y, z)− (xc, yc, zc), where
(x, y, z) represents the coordinates of each skeletal joint, and
(xc, yc, zc) denotes the coordinates of the center torso joint
in skeletal data, (2) temporal joint displacement, which is
defined as the temporal location difference of the same body
joint in the current frame with respect to the previous frame:
(ẋ, ẏ, ż) = (xt, yt, zt)−(xt−1, yt−1, zt−1), where (xt, yt, zt)
is the joint location at time t, (3) long-term temporal joint
displacement, defined as the temporal 3D location difference
between the current frame and the initial frame: ( ˙̃x, ˙̃y, ˙̃z) =
(xt, yt, zt)−(x0, y0, z0), where (x0, y0, z0) is the coordinates
of a joint in the initial frame, and (4) spatial joint distance,
which is defined as the geometrical distance of a joint to the
torso center joint: d = ‖(x, y, z) − (xc, yc, zc)‖2. Then, we



compute a histogram of each feature type to build a vector
that is used as a feature modality in our experiment.

B. Results on MSR Action3D Dataset

We evaluate the performance of the proposed approach to
recognize human behaviors when interacting with structured-
light cameras, using the MSR Action3D benchmark dataset
[26]. This dataset contains 20 categories of human actions
performed by 7 subjects for three times. The skeleton se-
quence of “high arm waving” is shown in Fig. 3.

Fig. 3. The MSR Action3D dataset is utilized in the experiment to evaluate
the proposed FABL approach, which contains 20 activities recorded using
Kinect, which are (M1) high arm wave, (M2) horizontal arm wave, (M3)
hammer, (M4) hand catch, (M5) forward punch, (M6) high throw, (M7)
draw x, (M8) draw tick, (M9) draw circle, (M10) hand clap, (M11) two
hand wave, (M12) side boxing, (M13) bend, (M14) forward kick, (M15)
side kick, (M16) jogging, (M17) tennis swing, (M18) tennis serve, (M19)
golf swing, and (M20) pick up & throw. This figure shows a sample skeleton
sequence of the action (M1) high arm waving in the dataset

We evaluate the recognition performance using a challeng-
ing subject-wise setting. That is, the training dataset does not
contain any data instances from the subjects who participate
in testing. When combined both structured sparsity-inducting
norms to perform simultaneous feature and skeletal joint
learning, our FABL method obtains an accuracy of 91.67%,
The confusion matrix obtained by our method is shown in
Fig. 4(a), which demonstrates our FABL approach is able to
well recognize most of the behaviors. The actions that are
not well identified is (M4) hand-catch, and (M7) draw-x that
is always misclassified as the action of (M8) draw tick or
(M9) draw circle, which have similar, small motions.

(a) MSR Action3D dataset (b) CAD-60 dataset

Fig. 4. Confusion matrices obtained by our FABL method over the MSR
Action3D and CAD-60 dataset datasets. The behavior category labels M1-
M16 and C1-C14 are described in Fig. 3 and Fig. 5, respectively.

We compare with two baseline methods including feature-
learning-only (γ2 = 0) and body-part-learning-only (γ1 = 0).
As presented in Table I, the feature-learning-only method
obtains an average recognition accuracy of 85.00%, while

the body-part-learning-only obtains an average accuracy of
86.67%. This indicates that FABL outperforms baseline
approaches using a single norm for regularization. In ad-
dition, we compare our FABL method with previous activity
recognition techniques based on skeleton features. FABL
achieves promising recognition accuracy (with the high-
speed performance) on the MSR Action3D dataset.

TABLE I
COMPARISON OF AVERAGE ACCURACY WITH PREVIOUS

SKELETON-BASED METHODS ON THE MSR ACTION3D DATASET

Reference Method Accuracy
Ofli et al. [11] Sequence of Most Informative Joints 41.18%

Wang et al. [10] Dynamic Temporal Warping 54.0%
Ellis et al. [27] Joints Distance + Key Poses 65.7%
Li et al. [26] Action Graph 74.7%
Xia et al. [28] HOJ3D 78%

Yang and Tian [9] EigenJoints 83.3%
Wang et al. [2] Actionlet Ensemble 88.2%

Ben Amor et al. [29] Skeleton Trajectories 89%
Feature Learning Only 85.00%

Our Methods Body-Part Learning Only 86.67%
FABL 91.67%

C. Results on Cornell Activity Dataset

The Cornell Activity Dataset 60 (CAD-60) [6] is a widely
applied benchmark for human activity recognition in robotics
applications. This dataset includes color-depth and skeleton
information of twelve daily activities as well as two motions
“still” and “random” recorded by a Kinect sensor in various
environments, including office, kitchen, bedroom, bathroom,
and living room. Each activity is performed by four subjects
with two males and two females (one subject is left-handed).
The skeleton data in each frame contains 15 joints, as shown
in Figure 5. We evaluate FABL’s performance in a subject-
wise cross-validation setup [30], where actions performed by
new subjects are used for testing.

Fig. 5. The CAD-60 dataset contains 14 behaviors, including (C1) standing
still, (C2) talking on the phone, (C3) writing on whiteboard, (C4) drinking
water, (C5) rinsing mouth with water, (C6) brushing teeth, (C7) wearing
contact lenses, (C8) talking on couch, (C9) relaxing on couch, (C10) cooking
(chopping), (C11) cooking (stirring), (C12) opening pill container, (C13)
working on computer, (C14) random. RGB images are depicted in the top
row, and the depth images with the human skeleton in yellow are shown in
the bottom row.

As demonstrated in Table II, the FABL method using both
regularization terms obtain an average accuracy of 83.93%,
and its detailed confusion matrix is graphically presented in



Fig. 4(b), which generally indicates that most of the activities
can be well classified by our approach.

TABLE II
COMPARISON OF AVERAGE RECOGNITION ACCURACY WITH PREVIOUS

SKELETON-BASED METHODS ON THE CAD-60 DATASET

Reference Method Accuracy
Ni et al. [30] Order-Preserving Sparse Coding 65.32%

Piyathilaka and
Kodagoda [31] Hidden Markov Model 78.38%

Wang et al. [2] Skeleton-based Actionlet Ensemble 74.70%
Zhang and Tian [32] Bag of Features 80.77%

Feature Learning Only 78.57%
Our Methods Body-Part Learning Only 79.46%

FABL 83.93%

We implemented two baseline techniques under the same
formulation. First, we set γ2 = 0 to evaluate the performance
of the feature learning scheme, and obtain an accuracy of
78.57%. Then, γ1 is set to zero to evaluate the performance
of the body-part learning scheme, and we obtain an aver-
age accuracy of 79.46%. It is observed that both baseline
methods perform worse than the full FABL approach using
both regularization terms. Moreover, we implemented a third
baseline method with no regularization terms, which obtains
an accuracy of 76.79% and performs worse than the methods
with the regularization terms. In addition, we compare our
FABL method with previous state-of-the-art skeleton-based
techniques for activity recognition, as reported in Table II,
which shows our FABL method outperforms these skeleton-
based techniques over the CAD-60 dataset.

D. Behavior Recognition for Human-Robot Interaction

Besides using public benchmark datasets to evaluate and
compare our FABL method’s accuracy, we also implemented
and deployed the method on a physical robot to validate its
performance in real-world robotics applications. The robot
employed in this experiment is a Baxter robot, as shown in
Fig. 6(a), which uses a structured-light sensor for onboard 3D
perception and the same workstation (Intel i7 3.4GHz CPU
and 16GB memory) for onboard control and data processing.

(a) Baxter performing “serving drinks” (b) Confusion matrix

Fig. 6. We evaluate our FABL approach using a Baxter robot to recognize
behaviors for real-time human-robot interaction. The tasks focus on the
robot-assisted living application such as “serving drinks” as shown in Fig.
6(a). The confusion matrix is illustrated in Fig. 6(b).

In this experiment, the task focuses on the robot-assisted
living application, where the Baxter robot needs to recognize

the activities of a subject and perform a collection of prede-
fined robot actions, such as “serving drinks,” as demonstrated
in Fig. 6(a), in response to the subject’s activity. We define
six robot actions, including fetching a drinking bottle with
one hand, fetching an empty cup with the other hand, pouring
the drinks into the cup, putting back the bottle, serving the
drinking cup to the subject, and finally putting back the cup.
Each robot action is triggered by a specific command gesture
performed by a subject in front of the robot, which must be
recognized by the Baxter robot. The skeleton data is captured
onboard and in real time using ROS and the OpenNI package.

Eight human behavior categories are defined and used to
interact with the robot, including lifting up left/right arms,
pouring with left/right hands, serving with left/right hands,
and putting down left/right arms. We specifically distinguish
between left side and right side, because this is critical
to take into account human preference in practical, real-
world scenarios. Two human subjects having different body
scales and motion patterns are involved in this experiment.
Each subject performs each of the eight behaviors 20 times.
Actions by one subject were used for training, while other
subject’s actions were used for testing. Ground truth is
manually recorded and used to compare with recognition
results obtained by the robot for quantitative evaluation. After
extracting multimodal features from training instances, our
method computes the optimal weight matrix by Algorithm 1
using the training data. Then, the learned FABL approach is
deployed on the robot for online, onboard behavior recogni-
tion to enable real-time human-robot interaction.

Similar to the experiments using public datasets, we also
quantitatively assess FABL’s performance and compare with
baseline and existing skeleton-based techniques. The average
accuracy obtained by the complete FABL method is 77.19%
with both regularization terms. The confusion matrix ob-
tained by our FABL approach is demonstrated in Fig. 6(b).
For comparison, the baseline technique based only on feature
learning (γ2 = 0) obtains an accuracy of 76.56%, while the
baseline based only on body part learning (γ1 = 0) obtains
an average recognition accuracy of 76.25%. In addition, we
compare our FABL method with several previous skeleton-
based recognition techniques and present the results in Table
III. We can observe that the FABL method is able to obtain
better performance over baseline and used previous methods.
Since only one subject’s actions were used to train the FABL
model, the recognition accuracy was not as significant as
that using public benchmark datasets. More training data will
improve the testing performance.

VI. DISCUSSION

High-Speed Processing. Due to the capability of our FABL
approach to integrate both feature learning and classification
in the same formulation, and the efficiency of our regression-
like objective function, our FABL approach is able to achieve
high-speed processing. To validate this strong advantage, we
perform additional experiments over the MSR Action3D and
CAD-60 datasets using Matlab implementations without any
optimization, and utilizing the real Baxter robot using a C++



TABLE III
COMPARISON OF AVERAGE RECOGNITION ACCURACY WITH PREVIOUS

METHODS FOR REAL-TIME HUMAN-ROBOT INTERACTION

Reference Method Accuracy
[27] Relative Angles and Distances 15.00%
[2] Histogram of Joint Position Differences 48.13%
[8] Histogram of Oriented Displacements 51.25%

Feature Learning Only 76.56%
Our Methods Body-Part Learning Only 76.25%

FABL 77.19%

implementation. The runtime results on all used datasets are
presented in Table IV, which shows our FABL approach can
achieve a significantly high processing speed at the order of
104 Hz. This indicates the promise of our FABL approach to
identify human behaviors in real-time robotics applications.

TABLE IV
RUNTIME ANALYSIS OVER DIFFERENT DATASETS

Runtime MSR Action3D CAD-60 Baxter

Processing speed (Hz) 2.2× 104 1.4× 104 3.3× 104

Time per observation (s) 4.5× 10−5 7.3× 10−5 3.0× 10−5

Generalizability. FABL is a general approach that can work
with different body kinematic models obtained by a variety of
sensing devices and skeleton generation packages, including
the OpenNI package in ROS, Microsoft SDKs, and MoCap
systems. Given any kinematic body model from the devices,
we can downsample the body model into 15 body parts, and
apply FABL to automatically identify the most representative
parts. In this case, FABL can achieve cross-training [5], i.e.,
methods trained on a kinematic body model from one device
can be directly applied to other models by a different device,
which can significantly save design labor.
Hyperparameter Selection. The regularization hyperparam-
eters γ1 and γ2 are utilized to control the effect of feature
learning and the strength of body-part learning, respectively.
Their optimal values can be decided using cross-validation
during the training process. In general, we observe that the
values γ1 = 0.1 and γ2 = 0.1 usually result in satisfactory
recognition accuracy, which shows that both regularization
terms are necessary. When the values of hyperparameters be-
come too large, the performance decreases, because the loss
function that models the recognition error is more ignored.
When γ1 and γ2 take too small values, the approach cannot
well capture the interrelationships of feature modalities and
body parts, thus decreasing the recognition accuracy.

VII. CONCLUSION

In this paper, we introduce a novel FABL approach that is
able to simultaneously learn discriminative feature modalities
and body parts to perform high-speed human behavior recog-
nition. The proposed FABL method automatically identifies
discriminative feature modalities and important body parts
using two structured sparsity-inducing norms to model their
interrelationships. Our FABL approach formulates behavior
recognition as a regression-like optimization problem, which

is solved by an efficient iteration algorithm that possesses
a theoretical guarantee to find the optimal solution. To
evaluate the performance of the proposed FABL method,
we perform empirical studies using two public benchmark
datasets and a physical Baxter robot. The experimental
results have indicated that FABL is able to outperform exist-
ing skeleton-based methods. More importantly, our FABL
approach achieves a high processing speed of more than
104 Hz, which can enable realistic, self-contained, intelli-
gent robots to recognize human behaviors and interact with
humans in real time.
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