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Abstract— Recognition of sequential human activities, such as
“sitting down” and “standing up”, is a common but challenging
problem in human-robot interaction, which requires modeling
their underlying temporal patterns. Although previous sequence
modeling methods, such as Hidden Conditional Random Fields
(HCRFs), demonstrated satisfactory recognition accuracy, they
do not explicitly model the uncertainty in underlying temporal
patterns, which can provide valuable information to character-
ize sequential activities. To address this problem, we introduce a
novel Minimum Uncertainty HCRF (MU, or μHCRF). Different
from traditional HCRF-based techniques that only utilize the
negative log-likelihood of the categories’ conditional probability
as the loss function, the proposed μ-HCRF also introduces a
regularization term to model the underlying temporal pattern
of the latent variables. As another theoretical contribution, we
provide a derivation to show that the formulated problem has a
closed-form solution, and prove that inference of the proposed
μHCRF is tractable. Extensive empirical study is performed to
evaluate our approach, using four public benchmark datasets.
Experimental results have shown that our μHCRFs outperform
previous techniques and achieve state-of-the-art performance on
human activity recognition, especially on sequential activities.

I. INTRODUCTION

Human activity recognition is an important research topic

that has a wide variety of real-world applications in service

robotics, human-robot interaction, and human-robot teaming.

However, human activity recognition from visual perception

is a challenging problem due to illumination changes, camera

motion, background clutter, and diversity of human motion

and appearance. In particular, robot recognition of sequen-
tial activities introduces additional challenges, including the

requirement of modeling their underlying temporal patterns.

For example, it is generally impossible to separate “standing

up” and “sitting down” from a single image, because humans

may exhibit the same pose in the images for both activities;

therefore, modeling temporal patterns is necessary.
A popular algorithm to encode human activity’s temporal

patterns is the Conditional Random Field (CRF) [1] method,

which is a discriminative graphical model that avoids encod-

ing the distribution of the input. However, CRFs are limited

in that they lack the capability to combine latent variables

that can capture underlying patterns within the observation

[2]. For example, a robot coach may need to model a com-

plex activity “tennis serve,” where atomic temporal motion
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patterns, such as “ball tossing” and “racquet swinging,” are

unknown, and thus must be modeled using latent variables.

To address this problem, Hidden Conditional Random Fields

(HCRFs) [2] were used to combine CRF model’s strengths

with latent variables. Due to the latent variable’s capability to

model temporal patterns of a sequence, HCRF methods are

widely applied in sequence labeling, such as human activity

recognition.

These previous HCRFs did not well model the uncertainty

in the latent temporal pattern; therefore, the latent variables

that encode temporal patterns are eliminated either by sum-

mation in HCRFs based on maximum likelihood estimation

(MLE) [2] or through maximization in max-margin (MM)

HCRFs [3]. The latent temporal pattern often provides useful

information for improving prediction accuracy [4], [5]. Also,

there are many scenarios in which a robot must confidently

understand the latent temporal pattern itself. For example,

a robot coach teaching “tennis serve” must maximize its

confidence on the chronological order of “ball tossing” and

“racquet swinging” in the temporal-motion pattern.

To address this critical problem, we propose a new HCRF-

based method to identify sequential human activities through

introducing a novel regularization term to the traditional loss

function, which models their latent temporal structure. Since

our approach is capable of modeling the uncertainty of latent

variables, we name this method Minimum-Uncertainty HCRF

(MU, or μHCRF). The contributions of this paper include:

• We introduce a novel regularization to the conventional

negative log-likelihood loss, which captures the uncer-

tainty in latent underlying temporal patterns and greatly

improves recognition accuracy of sequential activities.

• We derive a theoretical proof that the formulated objec-

tive function has a closed form and the inference process

of μHCRFs is trackable.

The rest of the paper is structured as follows. Section II

reviews the related work. In Section III, we present the for-

mulation of HCRFs. Then, our new μHCRF is introduced in

Section IV. After presenting experimental results in Section

V, we conclude the paper in Section VI.

II. RELATED WORK

General reviews of activity recognition are conducted in

[6], [7]. In the following, we discuss previous techniques that

focus on modeling temporal patterns for sequential activity

recognition, which can be grouped into two categories.

The first category uses space-time features to model tem-

poral patterns of sequential activities. Laptev [8] applied

histogram of spatial gradient (HOG) and optic flow (HOF) to
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describe local motion and appearance patterns in space-time

neighborhoods of the detected interest points. Dollar et al. [9]

described spatio-temporal features by concatenating the gra-

dients around the interest point’s space-time neighborhoods.

Recently, Wang et al. [10] introduced the motion boundary

histograms (MBH) to describe temporal motion variations.

Some other spatio-temporal features were also introduced in

[11], [12], [13], [14]. The features are often used to formulate

a bag-of-words (BoW) model to represent human activities.

Although satisfactory activity recognition performance has

been reported, space-time features encode temporal patterns

only within a short period of time, in general.

The second category to recognize sequential activities

is based on dynamic graphical models, which are able to

represent temporal structures that extend over long periods

of time. In a generative setting, Dynamic Bayesian Networks

(DBNs) [15] are a popular method for sequence modeling,

because they exploit structures in the problem to compactly

represent distributions over multiple state variables. Hidden

Markov Models (HMMs) [16] and their extensions [17], a

special case of DBNs, are a classical method for sequential

activity recognition. In a discriminative setting, CRFs [1],

HCRFs [2] and their extensions [3], [5] are the most widely

used approaches for modeling activity temporal structures.

Although previous dynamic models use hidden variables to

model the latent temporal pattern, the certainty in this pattern

is not well studied. We address this issue for HCRFs.

Our work falls into the second category focusing on devel-

oping learning models to address the problem of sequential

activity recognition. Different from previous HCRF methods,

we introduce a novel concept of modeling the uncertainty

of the underlying temporal pattern to improve the sequence

labeling performance. This is achieved through introducing a

new term to regularize the traditional negative log-likelihood

loss, which results in a close-form objective function with a

trackable inference process.

III. HCRFS FOR ACTIVITY RECOGNITION

In this section, we introduce the background of traditional

HCRFs, and discuss how sequential activity recognition can

be modeled using HCRFs.

A. Hidden Conditional Random Fields

When using HCRFs for supervised multi-class classifica-

tion, the goal is to learn a mapping f : X �→ Y from a

set of i.i.d. training data D = {(xi, yi), i = 1, . . . , N}, to

predict a class label yi∈Y for an observation xi∈X . Each

observation is a vector of M attributes xi = {x1, . . . , xM},
where xj ∈ R, j = 1 . . .M , is an attribute extracted from

visual data. The HCRF model also defines a vector of latent

variables h={h1, . . . , hN}, where hi∈H, corresponds to a

hidden label that is associated with the observation xi.

The HCRF is defined on an undirected graph G=(V, E),
whose nodes satisfy V = {x ∪ h ∪ y}. The HCRF graph

is annotated with a set of real-valued potentials ψ(D;θ)=
{ψ1(D1; θ1), . . . , ψP (DP ; θP )}, where D is the scope of

the potential ψ that satisfies D ⊆ V and D �⊆ x, θ is the

ࢎ࢞
ℎݕ ∈ {Toss, Swing, Hit} ࢞࢞

ݕ = tennis-serve

x: frame features

Input video:

Fig. 1. An illustrative example of utilizing HCRFs to model a sequential
“tennis-serve” activity. Each input x is a vector features extracted from a
frame; each frame is associated with a latent variable h, which represents a
primitive motion (e.g., “Toss”, “Swing” and “Hit”); and the entire sequence
has a single output y, encoding the sequential activity’s label. The latent
variables form a chain to model the temporal pattern of primitive motions.

parameter, and P is the number of potentials. The HCRF

network is connected with undirected edges E = {vi − vj :
{vi, vj} ⊆ Dk; ∀i �= j, k = 1, . . . , P}. HCRFs encode the

following conditional distribution:

P (y|x; θ) =
1

Z(x; θ)
P̃ (y|x; θ) (1)

=
1

Z(x; θ)

∑
h

P̃ (y,h|x;θ)

where P̃ (y|x;θ) is called the unnormalized measure that is

represented by a product of potentials, i.e., P̃ (y,h|x; θ) =∏
i ψi(Di; θi), and each potential ψi(Di; θi) must capture

some domain knowledge about the structure of the latent

variables; Z(x;θ) is the partition function that is computed

by Z(x;θ) =
∑

y∈Y,h∈HP̃ (y,h|x;θ).
To learn the model parameters θ, HCRFs minimize a loss

function L(x, y;θ) defined as the negative log-likelihood of

the conditional probability presented in Eq. (1):

θ∗ = argmin
θ
L(x, y;θ) = argmin

θ
− logP (y|x;θ) (2)

The formulated optimization problem can be solved using

off-the-shelf solvers, including Bundle Cutting Plane (BCP)

[18] and Non-convex Regularized Bundle Method (NRBM)

[19]. After learning the optimal parameters θ∗ during train-

ing, given a new observation x during testing, inference is

performed by picking the category label that minimizes the

loss function, i.e., y∗=argminy∈Y L(x, y;θ∗).

B. Sequential Activity Modeling Using HCRFs

We formulate human activity recognition as a sequence

classification problem, which requires to model time infor-

mation to distinguish challenging sequential human activities

(e.g., “standing up” and “sitting down”). An illustrative

example is provided in Figure 1 to model and recognize

the “tennis-serve” activity from a video clip that contains a

sequence of frames. Each input x ∈ X is a feature vector

from a frame; each frame is associated with a latent variable

h ∈ H, which represents a primitive motion (e.g., “Toss”);

and the entire video has a single output y, representing the

sequential activity’s label. The latent variables form a linear

chain to model time dependency of the frames. Let 1(·) be an

indicator function, and y′ and (h′, h′′) be the assignments to

the label and hidden variables, respectively. Then, following
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[2], [20], [3], our singleton observation potential ψO(·) at

time (frame) t is defined as:

ψO(D; θ) = exp(θht,xφ(h,x)) = exp(θh,xx1(ht = h′))

which models the compatibility between the input x and the

latent motion variable h. The singleton label potential ψL(·)
at time t is defined as:

ψL(D;θ)=exp(θh,yφ(ht,y))=exp(θh,y1(ht=h
′)1(y=y′))

which models the compatibility between the activity label

y and the latent motion h. The pairwise transition potential

ψT (·) from time t to t+1 is defined as:

ψT (D; θ) = exp(θh,h,yφ(ht,ht+1,y))

= exp(θh,h,y1(ht=h′)1(ht+1=h′′)1(y=y′))

which models the compatibility between activity label y and

a pair of latent motion variables (ht, ht+1), e.g., how likely

a video with activity label y′ contains a consecutive pair of

motions h′ and h′′ in this case.

In real-world scenarios, human motions are continuous,

and the transition from one pose to another is gradual, and

the point at which one pose ends and another begins is not

always distinct, as shown in Figure 1. Thus, values of hidden

variables are typically uncertain and noisy. To this end, an

approach that is able to minimize such uncertainty in latent

variables is important to improve the accuracy of sequential

activity recognition.

IV. OUR μHCRF APPROACH

In this section, we discuss the new regularizer introduced

in our μHCRF approach. Then, we prove that the formulated

objective function can have a closed form, and that inference

of μHCRFs is tractable.

A. Model Formulation

As presented in Eq. (2), the loss function L of traditional

HCRF models ignores the uncertainty in the latent variables,

which however is important to recognize sequential activities.

To model this temporal uncertainty, our μHCRF approach

introduces a novel regularizer R based on the entropy of the

latent variables, resulting in a new regularized optimization

problem as follows:

argmin
θ
− logP (y|x;θ) + γH(P (h|y,x;θ) (3)

where the regularization termR = H(P (h|y,x;θ) is the en-

tropy of the latent variables, which models their uncertainty

in these variables. γ is a trade-off hyperparameter balancing

the effect between the loss function and regularization term.

In our implementation, we use a general entropy named the

Kapur entropy [21] as our regularization term. Given discrete

random variables z, the Kapur entropy of order α and type

β is defined as:

Hα,β(P (z)) =
1

1− α
log

∑
z P (z)α+β−1∑

z P (z)β
(4)

where α �=1, α>0, β>0, and α+β−1>0. If α→0, β=1,

the Kapur entropy becomes the Hartley function [22], i.e.,

H0,1(P (z)) = logK, where K is the number of variables

in z with a positive probability. In the limit α→1 and β=1,

the Kapur entropy converges to the Shannon entropy. When

α→∞ and β = 1, we can obtain a quantity analogous to

the Chebyshev norm, i.e., H∞,1(P (z))=− logmaxzP (z).
The Kapur entropy is not convex, in general.

In the following, we prove that the regularized optimiza-

tion problem in Eq. (3) can have a closed form as a theorem.

First, we present a lemma:
Lemma 1: For finite discrete random variable z, the Ka-

pur entropy satisfies: Hα,β(P̃ (z)) = Hα,β(P (z)) − logZ,

where α �= 1, α > 0, β > 0, α+β− 1 > 0, P̃ (z) is the

unnormalized measure of P (z), and Z =
∑

z P̃ (z) is the

partition function.
Proof: Under the Kapur entropy constraints α �= 1,

α > 0, β > 0 and α+ β − 1 > 0, we obtain the following:

Hα,β(P̃ (z)) =
1

1− α
log

∑
z P̃ (z)α+β−1∑

z P̃ (z)β

=
1

1− α
log

∑
z (P (z) · Z)

α+β−1∑
z (P (z) · Z)

β

=
1

1− α
log

∑
z P (z)α+β−1∑

z P (z)β
+

1

1− α
logZα−1

= Hα,β(P (z))− logZ

Theorem 1: The optimization problem formulated by the

μHCRF method in Eq. (3) has a closed form solution when

γ = 1.
Proof: Because the normalization factor Z(x;θ) in Eq.

(1) is a constant, when γ = 1, the optimization problem in

Eq. (3) is equivalent to:

argmin
θ
− logP (y|x;θ) +H(P (h|y,x;θ) + Z(x;θ) (5)

Under the Kapur entropy constraints α �= 1, α > 0, β > 0
and α+ β − 1 > 0, we obtain the following:

Hα,β(P (h|y,x;θ))− logP (y|x;θ)− logZ(x;θ)

=
1

1− α
log

∑
h P (h|y,x;θ)α+β−1∑

h P (h|y,x;θ)β
− logP (y|x;θ)− logZ(x;θ) [via entropy definition]

=
1

1− α
log

⎛
⎜⎝
∑

h

(
P (y,h|x;θ)
P (y|x;θ)

)α+β−1

∑
h

(
P (y,h|x;θ)
P (y|x;θ)

)β

⎞
⎟⎠

− logP (y|x;θ)− logZ(x;θ) [via Bayes rule]

=
1

1− α
log

(∑
h P (y,h|x;θ)α+β−1∑

h P (y,h|x;θ)β · P (y|x;θ)1−α−β

P (y|x;θ)−β

)
− logP (y|x;θ)− logZ(x;θ)

=
1

1− α
log

∑
h P (y,h|x;θ)α+β−1∑

h P (y,h|x;θ)β

+

(
1

1−α
logP (y|x;θ)1−α−logP (y|x;θ)

)
−logZ(x;θ)

= Hα,β(P (y,h|x;θ))− logZ(x;θ)

= Hα,β(P̃ (y,h|x;θ)) [via Lemma 1]
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Therefore, solving the regularized optimization problem in

Eq. (3) is equivalent to solving:

argmin
θ

Hα,β(P̃ (y,h|x;θ)) (6)

which ends the proof.

B. Inference

Given an observation x, the output label y is inferred by

selecting the class that minimizes the new objective function

in Eq. (3):

y∗ = argmin
y∈Y

Hα,β(P̃ (y,h|x;θ)) (7)

which leads to not only a high likelihood of the human ac-

tivity label, but also a low uncertainty in the latent variables.

When the latent variables form a linear chain to model a

sequential activity, as illustrated in Figure 1, and the poten-

tials described in Section III-B are used, we can efficiently

compute the new objective function in Eq. (7) and solve the

inference problem, which is formally proved in Theorem 2.

First, we provide the following lemmas:

Lemma 2: The objective function in Eq. (7) can be de-

composed as a difference of unnormalized measures (defined

in Eq. (1)).

Proof: Under the Kapur entropy constraints α �= 1,

α > 0, β > 0 and α+ β − 1 > 0, we obtain the following:

Hα,β(P̃ (y,h|x;θ))

=
1

1− α
log

∑
h P̃ (y,h|x;θ)α+β−1∑

h P̃ (y,h|x;θ)β

=
1

1−α

(
log
∑
h

P̃ (y,h|x;θ)α+β−1−log
∑
h

P̃ (y,h|x;θ)β
)

Since P̃ (y,h|x; θ)=∏
i ψi(Di; θi) (discussed in Section III-

A), we define the following quantities:

P̃a(y,h|x; θ) =
∏

i ψ
a
i (Di; θi)

P̃b(y,h|x; θ) =
∏

i ψ
b
i (Di; θi)

where each potential has the same scope but new values:

ψa
i (Di; θi) = ψi(Di; θi)

α+β−1, ∀i
ψb
i (Di; θi) = ψi(Di; θi)

β , ∀i
As a result, we obtain:

Hα,β(P̃ (y,h|x;θ))

=
1

1− α

(
log
∑
h

P̃a(y,h|x;θ)− log
∑
h

P̃b(y,h|x;θ)
)

=
1

1− α

(
log P̃a(y|x;θ)− log P̃b(y|x;θ)

) (8)

Therefore, Hα,β(P̃ (y,h|x;θ)) is expressed as a difference

of unnormalized measures.

Unnormalized measures in Eq. (8) can be very efficiently

computed using belief propagation based on the data struc-

ture of a clique tree, which is commonly applied to perform

inference in conventional HCRFs [23], [24], [25], [2], [26],

Algorithm 1: Sum-Product Belief Propagation

Input : HCRF’s graph G=(V, E), graph potentials ψ(D)
Output : P̃ (y|x;θ)

1: Construct clique tree Tc = {Vc, Ec} from G=(V, E);
2: foreach node i ∈ Vc do
3: Initialize clique potentials: ϕi(Ci) =

∏
ψj :α(ψj)=i

ψj(Dj) ;

4: while ∃i, j : Ci is ready to send δi→j(Si,j) do
5: Compute and send the message: δi→j(Si,j) =∑

Ci−Si,j

(
ϕi(Ci) ·

∏
k∈(Nbi −{j}) δk→i(Sk,i)

)
6: end
7: foreach node i ∈ Vc do Compute clique belief:

βi(Ci) = ϕi(Ci) ·
∏
k∈Nbi

δk→i(Sk,i) ;

8: foreach edge i−j ∈ Ec do Compute sepset belief:
μi,j(Si,j) =

∑
Ci−Si,j

βi(Ci) ;

9: Compute P̃ (y|x;θ) =
∏

i∈VT βi(Ci)
∏

(i−j)∈ET μi,j(Si,j)
;

10: return P̃ (y|x;θ)

[20]. If HCRF’s latent variables h form an undirected tree Th,

we can always construct a clique tree Tc using the following

steps. First, we construct an undirected tree Tc that has the

same topology as Th, and assign the singleton potentials

ψ(hi, y) and ψ(hi, xi) to the clique Ci with the scope

{hi, y, xi}. Second, for each pair of the directly connected

cliques Ci−Cj , we remove the edge between the cliques,

add a new clique Cij with the scope {hi, hj , y} to form

a chain Ci−Cij −Cj , and assign the pairwise potential

ψ(hi, hj , y) to the new clique Cij . It can be easily verified

that the constructed tree Tc satisfies the family preservation

property and the running intersection property [24], and thus

is a clique tree. Because a linear chain structure is a special

case of a tree, we can also construct a clique tree for our

method. Given such a clique tree, our implementation of the

belief propagation algorithm is present in Algorithm 1, with

the computational complexity satisfies the following lemma

(similar to previous works [2], [20]):

Lemma 3: Algorithm 1 requires O(|E||Y||H|2) to com-

pute the quantity P̃ (y|x;θ) = ∑
h P̃ (y,h|x;θ).

Proof: The clique tree Tc is constructed in O(|V|) time

(line 1). Each pairwise potential is assigned to its correspond-

ing clique in O(1) time. Each singleton potential requires |H|
multiplication to be assigned, and the upper bound for the

number of such cliques is |V|. Therefore, the clique potentials

are initialized (line 3) in an O(|V||H|) runtime. Given a fixed

value of y ∈ Y , there are 2|E| messages that are passed

over Tc, each of which requires O(|H|2) time to compute,

resulting in an O(|E||H|2) runtime. Accordingly, ∀y, the

total runtime is O(|E||Y||H|2) (line 5). Finally, ∀y, clique

beliefs (line 7) and sepset beliefs (line 8) are computed in

O(|V||Y||H|2) and O(|E||Y||H|2) time, respectively. Thus,

Algorithm 1 is performed at O((|E|+ |V|)|Y||H|2). Since

|E| = |V|− 1 in a tree-structured graph1, the overall time

complexity of Algorithm 1 is O(|E||Y||H|2).
Then, the inference tractability is presented in the follow-

ing theorem:

1Loopy graphs satisfy |E|≥|V|.
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Theorem 2: Solving the inference problem in Eq. (7) is

tractable, with the time complexity of O(|E||Y||H|2).
Proof: According to Lemma 2, we obtain

Hα,β(P̃ (y,h|x;θ)) = 1

1− α

(
log P̃a(y|x;θ)− log P̃b(y|x;θ)

)
Lemma 3 shows the unnomalized measures P̃b(y|x;θ) and

P̃b(y|x;θ) can be computed in O(|E||Y||H|2) time. Thus

Hα,β(P̃ (y,h|x;θ)) can be computed with the same runtime.

Since argmin(·) is performed in O(|Y|) time. Solving the

problem in Eq. (7) takes O(|E||Y||H|2) time.

C. Learning

Given i.i.d. training data D = {(xi, yi), i = 1, . . . , N}.
The method’s parameters θ are estimated by minimizing the

following l2-regularized loss l(θ) = λlr(θ) + lemp(θ):

θ∗ argmin
θ

λ

(‖θ‖2
2

)
+ (9)(

1

N

N∑
i=1

max
y′i∈Y

(
Δ(yi, y′i)+e(yi,xi;θ)−e(y′i,xi;θ)

))

where e(y,x;θ) = Hα,β(P̃ (y,h|x;θ)). This problem can

be solved using the BCP algorithm [18] that is based on the

cutting plane technique [27]. A cutting plane of lemp(θ) =
lemp(x, y;θ) at θ′ is defined as:

cθ′(θ) = aTθ′θ + bθ′

subject to cθ′(θ
′) = lemp(θ

′)
∂θcθ′(θ

′) ∈ ∂θlemp(θ
′)

(10)

where aθ′ = ∂θlemp(θ
′), and bθ′ = lemp(θ

′) − aTθ′θ
′. The

cutting plane cθ′(θ) is a linear lower bound of lemp(θ).
The BCP method iteratively builds an increasingly accurate

piecewise quadratic lower bound of l(θ). Given an initial

value, θ is iteratively updated by:

θt+1 = argmin
θ

gt(θ) and vt = min
θ

gt(θ)

with gt(θ) = λ · lr(θ) + max
j=1,...,t

(cj(θ))
(11)

If lemp(θ) is convex, cj(θ) ≡ cθ′(θ) as defined in Eq. (10).

However, the objective function for learning of our mod-

el’s parameters is not convex in general, and the commonly

used convex solvers, such as BCP, cannot solve Eq. (9). To

solve this non-convex optimization problem, we adopt the

NRBM algorithm [19] that is described in Algorithm 2. Since

a cutting plane of lemp(θ) is not necessarily a lower bound,

a conflict occurs if and only if the cutting plane does not
satisfy the following constraint:

cθt
(θ∗t ) = aTθt

θ∗t + bθt
≤ lemp(θ

∗
t ) (12)

where θ∗t are the best observed parameters up to now (line 4

in Algorithm 2), in which case lemp(θ) is overestimated at

θ∗t . The conflict is solved by tuning the parameters at and

bt to form an alternative cutting plane, ct(θt) = aTt θt + bt,
which satisfies Eq. (12) and the following condition:

λlr(θt) + ct(θt) ≥ l(θ∗t ) (13)

Algorithm 2: NRBM for Learning MU-HCRFs

Input : Tc, ψ(D), θ0, λ, ε, D={(xi, yi), i=1, . . . , N}
Output : θ∗

1: for t ← 0 to ∞ do
2: Compute lemp(θ) over D acc. to Eq. (9);
3: Define cθt with parameters (aθt , bθt ) acc. to Eq. (10);
4: Compute θ∗t = argminθj∈{θ0,...,θt} l(θj);
5: if cθt(θ

∗
t ) = aT

θt
θ∗t + bθt > lemp(θ

∗
t ) then

/*There is a conflict*/
6: Compute upper bound U of bt acc. to Eq. (12):

U = lemp(θ
∗
t )− aT

θt
θ∗t ≥ bt;

7: Compute lower bound L of bt acc. to Eq. (13):

L = l(θ∗t )− λlr(θt)− aT
θt
θt ≤ bt;

8: if L ≤ U then Set at = aθt and bt = L;
9: else Assign at = −λ · ∂θlr(θ

∗
t ) and

bt = l(θ∗t )− λlr(θt)− aT
t θt;

10: Define alternative cutting plane: ct(θ) = aT
t θ + bt;

11: else Set ct(θ) = cθt(θ) ;
12: Update θt+1 and compute vt acc. to Eq. (11);
13: Compute gap: Gt = l(θ∗t )− vt;
14: if Gt ≤ ε then return θ∗t ;
15: end

The conflict resolution procedure is described between line

5 and line 11. Using the l2-regularizer, the NRBM algorithm

is guaranteed to produce an approximation gap smaller than

ε after T iterations and to converge with a convergence rate

O(1/(λε)) [19], where T ≤ T0 + 8C2/(λε) − 2 with T0 =
2 log(λ‖θ0 + a0/λ‖ /C)− 2, and C is an upper bound on

the norm of the cutting plane direction parameters.

V. EXPERIMENTS

Extensive empirical study is performed to evaluate the per-

formance of our μHCRF methods on classifying sequential

activities, which are represented by BoW or skeleton motion

sequences (SMS). We split each dataset into disjoint training

and testing sets. Fivefold cross-validation is employed over

the training set to estimate model hyper-parameters.

A. Cornell Activity Dataset

The CAD-60 dataset [28] was collected as a benchmark to

evaluate personal robots’ capability to reason about human

behaviors, which provides skeleton motion sequences in 3D

space along with color-depth videos captured by a Microsoft

Kinect camera. The CAD dataset contains twelve activities of

daily living, which are performed by four human subjects in

five different environments. We utilize the SMS features that

are provided by the dataset, which represent human activities

using 15 skeleton joints in 3D space. Following [28], we

adopt the “have seen” experimental setting, and randomly se-

lect 70% of each subject’s available data for hyper-parameter

selection and training. As in [28], the performance is reported

using precision and recall. In addition, we use accuracy as the

performance metric for hyper-parameter selection and model

evaluation.

Figure 2(a) and Figure 3(a) illustrate our μHCRF model’s

accuracy variations on the training sets using different hyper-

parameter settings. Given λ = 10−4, α = 0.25 and β =
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Fig. 2. Performance variations of Our μHCRF models on training sets using different hyper-parameter settings. For a clear presentation, standard deviations
are depicted only on the curves that contain the best results (depicted with solid lines).

10, our approach achieves the best average accuracy of

94.8± 1.77% over the training set. Employing the same set

of hyper-parameter values, our μHCRF model achieves a

92.8% accuracy on the testing set, with a precision/recall

of 89.7%/88.6%, which outperforms previous approaches,

as demonstrated in Table I. The experiment highlights our

μHCRF method’s capability of dealing with traditional glob-

al skeleton features that have become more accessible with

the emergence of affordable color-depth cameras.

TABLE I

PERFORMANCE COMPARISON OF OUR μHCRF MODEL WITH PREVIOUS

APPROACHES ON THE CAD-60 DATASET.

Approach Accuracy (%) Precision (%) Recall (%)

SVM [28] — 66.4 56.0
Piyathilaka et al. [17] — 84.0 73.0

Sung et al. [28] — 84.7 83.2
Ni et al. [29] 65.3 — —

Wang et al. [30] 74.7 — —
MM-HCRF [30] 88.7 86.5 84.9

μHCRF 92.8 89.7 88.6

B. MSR Action3D Dataset

The MSR Action3D dataset [30] was collected to bench-

mark the interaction capability of Kinect-enhanced gaming

consoles with human subjects, which contains 567 sequences

of skeleton motions and depth images, which are grouped

into 20 activity classes. Each activity is performed by ten

subjects two or three times. In our experiment, we use five

subjects for training and the rest for testing as in [30], [12].

Following [12], the HON4D features [12] are applied to

represent human activities in depth videos, which generate

a 120-dimensional histogram. We extract HON4D features

from each frame in a depth video to construct a temporal

sequence of such histograms, which serves as the input

to our model. Figure 2(b) and Figure 3(b) demonstrate

our μHCRF model’s accuracy over the training data using

different hyper-parameter settings; our model obtains the best

cross-validation accuracy of 92.98±1.01% when λ=10−2,

α=0.5 and β=5. Using these hyper-parameters, our μHCRF

model achieves an accuracy of 92.17% on the testing dataset.

Comparisons with previous approaches in Table II indicate

that our approach achieves the state-of-the-art result.

To show our μHCRF method’s capability of modeling

sequential activities that are represented by SMS features, we

conduct an additional experiment using the skeleton features

provided with the dataset. Each skeleton pose contains 20

joint positions with four values per joint. After selecting the

hyper-parameter values using the training set, we evaluate

our model over the testing set and obtain an accuracy of

90.77%. As compared in Table II, using SMS features, our

method still achieves good accuracy that is comparable to

the state-of-the-art, although it does not perform as well as

our μHCRF method using HON4D features.

C. HMDB51 Dataset

To evaluate our μHCRF’s performance in a more realistic

daily living scenario, we perform empirical studies based on

the HMDB51 dataset [31], which was collected from public

video resources including Google Videos and YouTube. The

dataset contains 6766 videos in 51 activity categories, each of

which has at least 101 instances. We adopt the three training-

testing splits provided by the authors for evaluation [31],

[32]. Each split contains 70 training and 30 testing clips from

every class. Average classification accuracy is applied as our

evaluation measure. The same HOG/HOF/MBH features (us-

ing improved dense trajectories) in the previous Hollywood-2

experiment are also applied on this dataset.

The average accuracy of our μHCRF model using a variety

of hyper-parameter values on the training set is presented in

Figure 2(c). Given the hyper-parameters α = 0.5, β = 5 and

λ = 10−7, our approach obtains the best cross-validation

accuracy of 61.6± 1.08%. Our model’s robustness to α and

β given λ = 10−6 is also analyzed, as shown in Figure

3(c). Similar to what we observe in the experiment using

the Hollywood-2 dataset, carefully selecting entropy hyper-

parameters increases the μHCRF model’s activity recognition

accuracy. Using these hyper-parameter values, our μHCRF

model achieves a classification accuracy of 58.1% over the

testing dataset, as demonstrated in Table II. We compare our

max-certainty model’s performance with the results reported
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in previous works in Table II, which highlights our μHCRF

model’s superior accuracy for human activity recognition.

TABLE II

COMPARISON OF AVERAGE CLASSIFICATION ACCURACY (%) OVER THE

COLOR HMDB51 AND DEPTH MSR ACTION3D DATASETS.

HMDB51 Acc. (%) MSR Action3D Acc. (%)

Wang et al. [10] 48.3 Yang et al. [33] 85.52
Jain et al. [34] 52.1 Wang et al. [13] 86.50

Wang et al. [35] 57.2 Wang et al. [30] 88.20
MM-HCRF [3] 53.8 Oreifej et al. [12] 88.89

HCRF 50.6 μHCRF (SMS) 90.77
μHCRF 58.1 μHCRF (HON4D) 92.17

Furthermore, we compare our μHCRF approach, which

explicitly models the uncertainty of the latent variables, with

other HCRFs. As presented in Table II, the μHCRF model

obtains much better results than other previous HCRFs,

which demonstrates that explicitly modeling uncertainty in

the latent temporal pattern can improve recognition accuracy.

At last, compared with conventional MM-HCRF approaches

[3], our μHCRF method obtains better performance. To

summarize, the comparison in Table II highlights the benefit

of modeling the uncertainty in underlying temporal patterns,

which results in the state-of-the-art activity recognition ac-

curacy. Similar conclusions are also observed in our other

experiments.

D. Hollywood-2 Dataset

In order to explicitly evaluate our methods over sequential

activities, we conduct experiments over the Hollywood-2

dataset [36], which contains 12 categories including sequen-

tial activities. This dataset contains unconstrained activities

from realistic daily living scenes; instances of each activity

are typically viewed from different camera angles. Following

the standard experimental settings [11], [37], [38], [36], [39],

[10], the dataset is divided into 823 training and 884 testing

instances; performance is evaluated using precision.

We use the standard BoW representation to evaluate our

model. After applying cuboid detectors [9], following [35],

we construct a codebook for the HOG, HOF, and MBH

descriptors via the k-means quantization. We fix the number

of visual words for each descriptor to be 4000, which has

empirically shown good results for a wide range of datasets.

Then, a total number of 300 words are selected via a feature

selection method [40] to reduce the complexity. The resulting

histogram of visual word occurrences is computed from each

frame in a video and used as our activity representation.

Figure 2(d) depicts our μHCRF model’s precision over the

training set across different hyper-parameter values. The best

cross-validation precision, 62.95± 1.67%, is obtained when

α = 0.25, β = 10, and λ = 10−6. Our μHCRF approach’s

robustness to the entropy hyper-parameters α and β given

λ = 10−6 is shown in Figure 3(d). We observe that, given

a fixed regularization hyper-parameter λ = 10−7, a careful

selection of the hyper-parameters α and β is able to improve

human activity recognition performance. Using these hyper-

parameters, our μHCRF approach obtains a 59.84% overall

performance over the testing set.

As compared in Table III, the μHCRF model performs

better than previous state-of-the-art approaches, on aver-

age. Most importantly, our μHCRF approach significantly

improves classification precision over sequential activities,

including SitDown, SitUp, StandUp, etc. The great precision

improvements demonstrate the importance of modeling la-

tent temporal patterns of sequential activities, and highlight

our μHCRF model’s superiority on recognizing sequential

activities, such as StandUp and SitDown, as demonstrated

by the blue font in Table III.

VI. CONCLUSION AND FUTURE WORK

We propose the new μHCRF method to identify sequential

human activities, which is critical in many human-centered

robotics applications but not well studied in previous work.

Besides using the traditional negative log-likelihood of class-

es as the loss function, we propose a new regularizer that is

able to model the uncertainty of latent variables to deal with

the gradual transition between continuous human motions in

a sequential activity. In addition, we prove that the inference

problem in our μHCRF method is tractable, and the learning

problem can be performed efficiently. Extensive experiments

using public benchmark datasets validate that our μHCRFs

approach achieves promising performance for human activity

recognition, especially for identifying sequential behaviors.

Future work will include implementing and optimizing our

μHCRFs in physical robotic systems to enable human-robot

interaction in the applications such as playing “Simon Says”

games with kids [14].
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