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Abstract. Accurately detecting changes in one’s environment is an im-
portant ability for many application domains, but can be challenging for
humans. Autonomous robots can easily be made to autonomously detect
metric changes in the environment, but unlike humans, understanding
context can be challenging for robots. We present a novel system that
uses an autonomous robot performing point cloud-based change detec-
tion to facilitate information-gathering tasks and provides enhanced sit-
uational awareness. The robotic system communicates detected changes
via augmented reality to a human teammate for evaluation. We present
results from a fielded system using two differently-equipped robots to
examine implementation questions of point cloud density and its effect
on visualization of changes. Our results show that there are trade-offs
between implementations that we believe will be constructive towards
similar systems in the future.

Keywords: Human-Robot Teaming · Augmented Reality · Simulta-
neous Localization and Mapping (SLAM) · Change Detection · Field
Robotics.

1 Introduction

The real world is an endlessly dynamic and varying place. The ability to detect
changes in an environment is important both for intelligent robots to operate in
the real world and for robots to operate alongside humans as teammates.

Robots with minimal capabilities may be able to operate using simple reactive
or closed-loop control to perform a basic task. This is particularly true where
efforts can be made to engineer and instrument the environment to simplify the
task space. However, the increased task and environmental complexity present
in real-world scenarios will require more sophisticated capabilities, including
scene understanding so that a robot can reason about essential information such
as the state of a task or the feasibility of goal completion [14]. Importantly,
this mission-critical information can be deduced from detecting changes in the
robot’s environment and contributes greatly to whether an autonomous robot
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can complete a given mission. Take, for example, a search and rescue application
where a change may make the goal state unachievable, such as a planned route
becoming blocked by rubble. In this case, not only will the autonomous robot
not be able to navigate to its intended destination, but the safe execution of
the entire mission may be in jeopardy if the change’s context indicates a high
likelihood of additional adverse events, e.g., falling debris or adversarial activity.

(a) (b)

Fig. 1. Changes detected in the point cloud model (a) indicate potential locations of
devices placed by an adversary (b).

In order for robots to operate alongside humans as teammates, the ability to
communicate these detected changes and corresponding reasoning is also impor-
tant for a variety of cooperative tasks. For example, in autonomous inspection of
infrastructure, the ability to detect, identify, and communicate changes that rep-
resent structural deterioration to a human is essential for affecting timely repairs.
An example in security robotics is the ability for a surveillance robot to detect
changes along its regular patrol route that might indicate actions by adversarial
agents, e.g., a break-in or the placement of a dangerous device, such as shown in
Figure 1, which a human teammate would want to be informed of immediately.
In the context of cooperative tasks involving humans and autonomous robots,
the relevant information must be exchanged between the teammates in a timely
fashion for optimal and responsive decision making.

Detecting even large changes in complex environments can be challenging
for humans [3,13]. Mobile robots can autonomously perform metric-based com-
parisons of sensor readings to detect potential changes, but lack contextual un-
derstanding to determine their significance. In addition to the potential for in-
nocuous change in any real world environment, algorithmic methods for robots
to detect changes can be noisy and yield numerous false positives. Combined,
these issues provide significant obstacles for autonomous robots to interpret and
act upon detected changes. We believe that a human-robot team working coop-
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Fig. 2. Augmented reality situational awareness in human-robot teaming.

eratively to detect, interpret, and act upon changes offers a powerful means to
overcome their mutual shortcomings. Together, the human and robot possess the
capabilities to detect and identify changes of importance in any specific scenario
context; however, the critical challenge becomes creating an efficient method of
communicating, interpreting, and prioritizing changes.

We present a novel approach to address this challenge that uses Augmented
Reality (AR) to create a human-robot team where the robot identifies changes,
communicates them via AR to the human teammate, who can then interpret
their context for further action. Our system is intended to address the general
case of detecting changes in an arbitrary environment without external instru-
mentation and presenting them to a human teammate using AR, building upon
previous work in [10]. The AR system we employ is a head-mounted device
(HMD) worn by the human teammate, who is co-located in the environment
with the robot (Figure 2). This allows the robot to present augmented visual-
izations via the HMD to provide situational awareness to the human teammate,
which enables improved decision making and collaboration. We believe this is the
first example of the use of AR for communicating and interpreting environmental
changes detected by an autonomous robot to a human teammate.

Detection of environmental changes takes place on-board the mobile robot in
real time (Figure 1). A prior model is collected of the environment in a “clean”,
initial state. This model consists of a point cloud together with an anchoring
position and orientation, referred to as a pose, which is registered into a global
reference frame. To compare the current state of the environment with this
model, a fine alignment is computed using generalized-ICP [12] with the robot’s
pose from a Simultaneous Localization and Mapping (SLAM) solution as an
initial guess. Points in the current scan which are further than the intrinsic sensor
noise threshold from the model are clustered into candidate change regions.
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The candidate change regions of sufficient size are highlighted in the user’s AR
interface for the human to evaluate for further action.

One important question when implementing a point cloud-based change de-
tection system is: What is the appropriate sampling density with regards to sys-
tem performance and user experience? To validate our approach and examine
this question, we implement and test our system using two otherwise identi-
cal robots equipped with different commercial-off-the-shelf LiDAR devices that
generate relatively sparse and dense point clouds. Our robots autonomously per-
form change detection and present changes online to the human teammate via
the HMD interface.

We hypothesize (H1 ) that the higher-density LiDAR would provide more
accurate detection in all environments than the lower-density LiDAR. Given
that expectation, we further hypothesize that (H2 ) when the user is teamed
with the higher-density LiDAR robot, the visual presentation to the user would
be more discriminative, i.e., correct change detections would be more obvious.

To evaluate these hypotheses, we compare performance between the two
robotic systems in two different field environments: in an alleyway street scene
and an outdoor driveway with a parking space. Our results show that while
the higher-resolution LiDAR does produce a denser point cloud and therefore
more true positive detections, when evaluated in field environments there are a
number of distinct trade-offs that mean the higher density is not always more
accurate, nor does it always provide a better user experience. Full results are
discussed in Section 5.

2 Background and Related Work

Novelty detection is a broad and robust area of research that generally means
the recognition of elements in test data that differ from training data or a model
learned from that data [7]. Environmental change detection can be seen as the
application of novelty detection to tasks where physical changes in a specific
environment, e.g., object addition or removal, are identified on an ongoing basis
by comparing continuously reacquired test data against a known model.

Robots operating in real-world environments have a strong need for accu-
rate change detection, particularly for tasks where one robot or teams of robots
repeatedly encounter the same environment. This area of research has broad ap-
plications including inspection [5], surveillance [6, 18], safety and security [15],
and general robust outdoor navigation [14].

Augmented and mixed reality technologies are currently experiencing a pe-
riod of growth for use in human-robot interaction (HRI) as they present a mech-
anism for overcoming issues of communication in HRI [16]. Similarly, this work
uses AR to overcome issues of communication and contextual understanding
in HRI by creating more robust human-robot teams for operation in field en-
vironments. Previous work by the authors presented an overview of examined
applications in this domain [10].
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3 Approach

3.1 SLAM

In our system, both the AR-HMD and the mobile robot construct independent
3D representations of the environment utilizing a Simultaneous Localization and
Mapping (SLAM) algorithm. For the AR-HMD, this approach is based upon
visual feature tracking and is provided as a black-box solution delivered with the
interface (Microsoft HoloLens). The SLAM implementation utilized onboard the
robot is based upon OmniMapper as described in [17] with further refinements
described in [4]. Briefly, the approach is to build a pose graph over measurements
between adjacent point clouds and loop closures when locations are revisited.
These measurements are used to compute a solution to the robot’s trajectory
in a least squares sense via the nonlinear optimization framework GTSAM [1]
based upon square root smoothing and mapping [2]. Each point cloud taken
along this optimized trajectory solution is then projected into a common frame
of reference and accumulated into a point cloud representing the environment.

Of course, using shared environmental information like change detections for
teaming between the human and the robot is impossible without a common frame
of reference. Alignment of the human and robot teammates’ coordinate frames
is therefore critical for understanding teammate position. We use the approach
presented in previous work [9] to enable this capability. Since both the robot
and the AR-HMD can generate a geometric representation of the environment
in point cloud format, we can then compute the homogeneous transformation
matrix between the robot and human point clouds using the Iterative Closest
Point (ICP) algorithm [12]. The initial computation is performed on a coarse
estimate provided by the human, and is then recomputed online as the human
and robot maneuver through the environment.

3.2 Change Detection

To perform change detection, first a model cloud representing the “clean” state
of the world is built via the SLAM process described in Section 3.1. At any time
in the future, the robot can then collect a test cloud using the same procedure.
This cloud can either be collected completely and then processed, or processed
incrementally during collection.

Once a test cloud is created, either at the end of a patrol or incrementally
online, it is analyzed for changes from the model cloud. These clouds are in
approximately the same reference frame either through coarse GPS alignment
or by originating the maps near the same place, as was done in this paper.
Note, however, either of these approximate alignment methods is insufficient
to support change detection due to the large errors that inherently result from
small rotational alignment errors. Therefore, the alignment of these clouds is
first refined with a generalized ICP [12] procedure.

Once the model and test clouds are accurately aligned, change detection is
implemented in PCL [11] via a set of difference segmentation functions and out-
lier filters. The difference segmentation routine builds a KD-tree of the model
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to reduce quadratic search complexity to n log n. Each point in the test cloud is
then compared with the model via the KD-tree to find the nearest point and its
distance. If this distance is greater than a threshold, which in our experimenta-
tion is 10 cm, it is accumulated in a new point cloud denoted change.

The change cloud is then filtered to remove noisy detections by looking for
support of at least 10 detection points within a radius of 30 cm. This will remove
small isolated groups of detection points which might be due to range error in
the sensor or quantization error in the representation used by the mapper. Other
errors are possible due to occluded regions in the model cloud which happen to
be visible due to slight viewpoint variance in the test cloud; these regions will be
present in the change cloud and will lower the precision of the analyzed results
in Section 4. The segmented changes can be seen in Figure 1 for an example
scenario where a device has been hidden under a bicycle and is detected by the
robot system.

3.3 Augmented Reality Interface

Change detections described in Section 3.2 are continuously collected as the
robot navigates through the environment. Filtered candidate changes are pre-
sented to the user via the AR-HMD as translucent red spheres with a radius of
4 cm. An example of changes detected and visualized in the AR-HMD is shown
in Figure 3, where the user can see the detected change locations superimposed
over the physical changes in the environment. For the user’s reference, the 2D
occupancy grid generated by the robot’s SLAM implementation (Section 3.1) is
also visualized as a 2D projection onto the ground plane, with white represent-
ing unoccupied and black representing occupied space in the robot’s map. Using
this information, the user is able to evaluate and identify actual changes for fu-
ture investigation. For example, the user could prioritize examining a suspicious
package or removing debris blocking a road. The locations where visualizations
coincide with movable objects are the most likely candidates for such changes.

Future work will be directed at refining the interface through testing different
data aggregation, visualization, and interaction types through the HMD with
an aim towards improving the interpretability and accuracy of the information
displayed, as well as directing the robot to autonomously address changes that
the human deems of interest.

4 Experiments

We tested our hypotheses from Section 1 through an evaluation of our approach
using the complete system online in experiments in two different environments.
By examining the performance of the change detection and AR visualization
by teaming a human wearing an AR-HMD with two otherwise identical robots
equipped with different resolution LiDAR systems, we are able to reach several
valuable conclusions regarding the development, applicability, and configuration
of such systems.
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(a)

(b)

Fig. 3. Augmented reality visualizations of changes (red spheres) in the two experimen-
tal environments: (a) alley and (b) driveway. Also shown are the robot’s 2D occupancy
grid map as white (unoccupied) and black (occupied) cells projected onto the ground
plane, and the current location of the robot (blue box).

4.1 Hardware

The hardware employed for these experiments included two Clearpath Robotics
Jackal robots. This wheeled platform measures 0.508× 0.430× 0.250 m and can
move at a maximum velocity of 2.0 m/s. Each have an Intel Core i5-4570TE CPU
and runs Ubuntu 16.04 and the Robot Operating System (ROS) [8] on board.
Each was equipped with a MicroStrain 3DM-GX4-25 inertial measurement unit
(IMU) for improved mapping and state estimation performance, and a Ubiquiti
Bullet M5HP 5GHz WiFi radio for communications.

Because both the change detection (Section 3.2) and corresponding visu-
alization of those changes in AR (Section 3.3) are highly dependent upon the
density of the point clouds collected by the system, we equipped each robot with
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Fig. 4. The two robots used in our experiments, which are equipped identically with
the exception of Velodyne VLP-16 LiDAR (left) and Ouster OS1 LiDAR (right).

a different Light Detection and Ranging (LiDAR) device. The first robot was
equipped with a lower density Velodyne VLP-16 LiDAR sensor, which has 16
laser rangers oriented with a 1.9◦ elevation angle separation, a range of 100m,
and collects approximately 300,000 points per second in a 360◦ azimuthal field
of view and a 30◦ elevational field of view. The second robot was equipped with
a higher density Ouster OS1 with 64 laser rangers oriented with a 0.7◦ elevation
angle separation and a range of 120 m that collects over 1.3 million points per
second with 360◦ azimuthal and 45◦ elevational fields of view. Both robots are
shown in Figure 4.

The human is equipped with the Microsoft HoloLens AR-HMD3. Custom vi-
sualization messages are communicated between the robots and the HoloLens us-
ing a combination of ROSBridge4 (on the robots) and ROS#5 (on the HoloLens).

4.2 Environments

Two environments were used for these experiments. The first was an alleyway
street scene constructed for the purpose of robotics experimentation that features
a narrow alley space between two multi-story buildings seen in Figure 5a. The
second was an outdoor driveway with a parking space that is adjacent to trees
and a building, as seen in Figure 5c. Both presented unique features that excited
the change detection system in different ways.

The model point clouds generated by each robot for each environment are
shown in Figure 6a-6c. The differing density of the clouds due to the different

3 https://www.microsoft.com/en-us/hololens
4 http://wiki.ros.org/rosbridge_suite
5 https://github.com/siemens/ros-sharp
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(a) (b)

(c) (d)

Fig. 5. Environments used in the experiments. (a) and (c) show the alley and driveway
environments. (b) and (d) show environments with changes added. In (b), a ball, yellow
case, and steel drum were added to the alley scene. In (d), a small All-Terrain Vehicle
(ATV) was placed in a parking space.

LiDAR resolutions can be clearly seen in the quantity of points and resulting
appearance of fidelity.

4.3 Procedure

The procedure for each experiment was as follows. In each environment, following
the approach in Section 3, a model point cloud was collected and stored.

Then, changes in the form of novel objects were placed in the environment
that were not present in the model, as depicted in Figures 5b and 5d. For the
next phase, a robot re-explored the environment while collecting test clouds
and evaluating them online against the model cloud. As changes were detected,
visualizations were immediately displayed via the AR-HMD interface to a human
who was co-present in the environment. Model, test, and the robots’ change
detection performance, as well as video from the AR-HMD user’s experience
were all recorded for analysis.



10 C. Reardon et al.

(a) Alley - Low Resolution LiDAR (b) Driveway - Low Resolution LiDAR

(c) Driveway - High Resolution LiDAR (d) Alley - High Resolution LiDAR

Fig. 6. Model point clouds of each environment for each LiDAR sensor type.

5 Results and Discussion

Recall that our initial hypotheses were:

H1: The robot equipped with the higher resolution LiDAR would provide more
accurate detection than the robot with the low-density LiDAR.

H2: Visual presentation to the user will be more discriminative (correct change
detections would be more obvious) with the higher resolution LiDAR.

Interestingly, the first hypothesis H1 did not hold entirely for either environ-
ment, given our assumptions, and for different reasons. First, it is worth noting
that our change detection algorithm is far from perfect; it can at times pro-
duce a large number of false positives. These can be due to small errors and
misalignments in the collection, noise in the data, or noise in the environment
itself such as random motion effects like wind. In light of this, the density of
the point cloud was actually detrimental to the statistical performance of the
higher-resolution LiDAR. Where the low-resolution LiDAR would detect a few
spurious point changes, the high-resolution would detect a large number. This
effect can be seen clearly in the alley environment between Figures 7a and 7b.
Figures 9 and 10 show the actual point cloud detections over time; one can ob-
serve the relative number of false positives in particular. Further, even though
the alley has many of the visual aspects of a real street scene, because it is
part of a larger “mock” staged environment contained in large building it is not
subject to environmental changes such as wind. The effect of wind noise on the



Robot Change Detection and Augmented Reality 11

(a) Alley - Low Resolution LiDAR (b) Alley - High Resolution LiDAR

(c) Driveway - Low Resolution LiDAR (d) Driveway - High Resolution LiDAR

Fig. 7. True positive, false positive, and false negative detection results from the two
robot configurations (lower and higher resolution LiDAR) in two environments (al-
ley street scene and outdoor driveway with a parking space). Note the difference in
Detections scale.

system was highly pronounced for both robots in the driveway scene, as seen in
the high number of false positives as time increased in Figures 7c and 7d. The
relative quantity of false positives from wind blowing on surrounding vegetation
is shown best in Figures 11d and 12d.

Despite the difficulty of noisy environments and the system’s tendency to
be sensitive to these small errors and produce a large number of false positives,
we were pleased to find support for invalidating H2 as well. While this work
did not include a user study and therefore cannot be conclusive, anecdotally we
found that despite relatively significant numbers of false positives visualized to
the user, because of the tight clustering of change detection visualizations on
true changes, the noisy data was easily filtered out by a human user. This is
illustrated in viewpoints taken from the AR-HMD in Figure 3, where despite
false change detections to the left in Figure 3a one can clearly see the changes
clustered on the objects, and likewise despite false changes in the grass and trees
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(a) True Neg, Alley - Low Res LiDAR (b) True Neg, Alley - High Res LiDAR

(c) True Neg, Driveway - Low Res LiDAR(d) True Neg, Driveway - High Res LiDAR

Fig. 8. True negative detection results from the two robot configurations (lower and
higher resolution LiDAR) in two environments (alley street scene and outdoor driveway
with a parking space). Presented separately from Figure 7 due to relative magnitude
vs. other detection types. Note the difference in Detections scale.

in Figure 3b, one’s attention is immediately drawn to the changes indicated on
the ATV.

With these results in mind, we can define a set of trade-offs and design deci-
sions that we believe may be constructive towards further refinements of similar
systems in the future. The LiDAR resolution had significant and somewhat un-
expected trade-offs. As noted above, there was a significant magnifying effect on
the false positive detections for the high-resolution LiDAR. Extensive outdoor
environments where no barriers exist to LiDAR scans present a computational
challenge to both robots. In the driveway environment, the processing time for
the lower-resolution LiDAR robot was demonstrably longer than in the alley,
resulting in about half as many test clouds being processed per unit time. This
effect was much worse for the other robot, as the size of the point cloud on a high-
resolution LiDAR like the Ouster OS1 makes the change detection algorithm,
while not completely intractable, too slow to run on our robot’s hardware in
any reasonable timeframe. For this reason we applied a threshold to the LiDAR,
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(a) t=0s (b) t=9s

(c) t=13s (d) t=17s

Fig. 9. Example results from the lower resolution LiDAR-equipped robot in the alley
scene (Figure 5b). Plots (a)-(d) show spatial representations of true positive, false
positive, and false negative detections at progressing time lapses. The robot begins at
position (2, 0, 0) and proceeds along the X axis. True positives on the right, centered
around (3.5,−0.5, 0.25), are change detections intersecting the yellow case in Figure 5b.
True positives on the left near (6.5, 1, 0.5) are change detections intersecting the black
drum. The ball in Figure 5b was not detected.

limiting any laser return to 50 m in an effort to reduce the point cloud size. For
a more fair comparison we made a corresponding change in the post-processing
of the results from the low-resolution LiDAR robot, discarding detections over
50 m.

In terms of object detection, the higher-resolution LiDAR robot was the
only robot to successfully detect the ball in the alley scene (Figure 5b). For a
visualization of that detection compare Figure 9 with Figure 10. Note the ball
location at (3, 0.75, 0.1). It is possible that with better tuning of the change
detection the ball could be detected by the lower-resolution LiDAR; however, it
is entirely possible that the low number of points returned from such a small
object will always be filtered.
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(a) t=0s (b) t=11s

(c) t=17s (d) t=21s

Fig. 10. Example results from the higher resolution LiDAR-equipped robot in the
alley scene (Figure 5b). Plots (a)-(d) show spatial representations of true positive, false
positive, and false negative detections at progressing time lapses. The robot begins at
position (2, 0, 0) and proceeds along the X axis. True positives on the right, centered
around (3.5,−0.5, 0.25), are change detections intersecting the yellow case in Figure 5b.
True positives on the left near (6.5, 1, 0.5) are change detections intersecting the black
drum. True positives on the left near (3, 0.75, 0.1) are detections intersecting the ball.

Finally, the purpose of this system is ultimately to present changes to the
human for evaluation of further action. Given the concerns of tractability of
computation, accuracy of detection, and sufficiency of information, and given
our change detection approach, unless there is a need to detect small changes in
the environment, we believe that a robot equipped lower resolution LiDAR may
be capable of detecting and presenting changes to the human user via the AR-
HMD just as well, if not better, than a robot equipped with a higher-resolution
LiDAR. We caveat this with the expectation that given sufficient optimization for
computation, detection accuracy, and information downsampling (e.g., through
filtering and clustering) in the user interface, the system with a higher-resolution
LiDAR should be able to be made to outperform the lower-resolution.
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(a) t=4s (b) t=7s

(c) t=13s (d) t=30s

Fig. 11. Example results from the lower resolution LiDAR-equipped robot in the drive-
way scene (Figure 5d). Plots (a)-(d) show spatial representations of true positive, false
positive, and false negative detections at progressing time lapses. The robot begins
at position (0, 0, 0) and proceeds along the X axis. True positives on the left near
(7, 5, 0.5) are change detections intersecting the small ATV in Figure 5d. The numer-
ous false positives in the space over 10 m from the origin coincide with vegetation in
the scene blowing in the wind.

6 Conclusion

In this paper we present an approach to provide situational awareness of change
detections found by an autonomous robot to its human teammate. This approach
is motivated by the complimentary observations that 1) change detection can
be challenging for humans yet entirely tractable for properly equipped and pro-
grammed autonomous robots, and 2) understanding change context is easy for
humans and challenging to implement on an autonomous robot. The approach
presented compares observed test point clouds against an a priori collected model
cloud to generate change detections. Our system enables the robot to communi-
cate detected changes via AR visualizations to the human teammate for evalua-
tion. To field such a system, an important consideration is the sampling density
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(a) t=0s (b) t=16s

(c) t=35s (d) t=86s

Fig. 12. Example results from the lower resolution LiDAR-equipped robot in the drive-
way scene (Figure 5d). Plots (a)-(d) show spatial representations of true positive, false
positive, and false negative detections at progressing time lapses. The robot begins
at position (0, 0, 0) and proceeds along the X axis. True positives on the left near
(7, 5, 0.5) are change detections intersecting the small ATV in Figure 5d. The numer-
ous false positives in the space over 10 m from the origin coincide with vegetation in
the scene blowing in the wind.

of the point cloud. We implement our system on two otherwise identical robots
with different resolution LiDAR sensors and examine two hypotheses about the
system’s change detection performance and visualization interpretability. Our
results lead us to conclude that higher resolution is not simply better, and we
identify several trade-offs between implementations. We observe that regardless
of the implementation and although a full human study is out ot scope of this
paper, there is evidence that our approach is sufficient to provide situational
awareness of changes in the environment to human teammates.
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