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Abstract
Resource-constrained continuous surveillance tasks represent
a promising domain for autonomous robotic systems. How-
ever, solutions to these problems must operate within a high-
dimensional space and have an accurate model of the under-
lying target distribution to perform well. We present an in-
tegrated human, autonomous planning system that iteratively
explores the space of surveillance solutions based on limited
human interactions in an attempt to maximize both quanti-
tative task-performance and qualitative operator satisfaction
measures. This paper includes a description of our approach,
implementation, and a demonstration that illustrates repre-
sentative planning.

Introduction
Mobile robotic systems offer significant advantages in long-
duration search and surveillance tasks – continuous atten-
tion, precise location-awareness, and expendability in dan-
gerous environments are but a few. While the use of au-
tonomous robotic systems for these tasks seems inevitable,
it remains an open question how these systems will inter-
act with their human operators or teammates. The design
of interactions between robots and humans has implications
ranging from system performance to trust and acceptance.

In this paper, we consider a resource-constrained contin-
uous surveillance task where a robot must traverse the envi-
ronment to maximize its probability of detecting a target as
depicted in Figure 1. We focus on the interaction between a
human and the autonomous agent planning the observation
route for the robot. Rather than assuming human interaction
to be a one-shot effort, we consider interaction to be an it-
erative process between the human and autonomous system
concluding when the human is satisfied with the solution.

Information-theoretic approaches to robotic map-
exploration have received considerable attention as they
provide mathematically well-founded information-gain
functions that can be used for active control and plan-
ning (Charrow et al. 2015) and has recently been applied to
target-detection and tracking problems (Charrow, Michael,
and Kumar 2015).

The class of resource-constrained continuous surveillance
tasks we are interested in have long been considered by the
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Figure 1: The task is to find a set of viewpoints vj that
maximize the expected target-detection rate based on sen-
sor footprints F (vj) such that a path can be driven to visit
all viewpoints within a cost budget B. A human interacts
with the system by adjusting its prior belief on target loca-
tions, e.g., the cloud in this figure, to achieve information-
gathering tours that are acceptable and high-performing.

Operations Research (OR) community and referred to as the
orienteering or selective traveling salesperson problems (La-
porte and Martello 1990). In these problems, the task is to
find a subset of locations such that the tour, i.e., solution
to the traveling salesperson problem, maximizes reward for
visiting each location while keeping the total solution cost
under some budget. Recent work has further defined the cor-
related orienteering problem as an extension where the re-
ward for visiting each location is correlated with the set of
other locations visited, making the problem more amenable
to planning informative tours in the context of persistent
monitoring (Yu, Schwager, and Rus 2014). Efficient approx-
imate algorithms have been shown to solve the correlated
orienteering problem at speeds that make it reasonable to
use in an online robotic setting (Arora and Scherer 2016).

While there have been many recent efforts addressing hu-
man interaction with autonomous planning systems (Rear-
don and Fink 2016), two are particularly related to the
informative-tour-planning problem we are considering and
offer contrasting approaches. One approach is to repre-
sent human interaction as a set of constraints within which
the robot must plan for an optimally informative path (Yi,
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Figure 2: System overview. Progress flows downward, be-
ginning with human input, as the orienteering problem solu-
tion is generated and presented back to the human operator.

Goodrich, and Seppi 2014) while the contrasting view is
to have the human shape the information function used to
make decisions (Lin and Goodrich 2010). Because corre-
lated orienteering problems are already heavily constrained
and additional constraints could easily lead to infeasibility,
we adopt the concept of shaping the information function
rather than applying human-derived constraints. We note
that there is a strong connection between our work at that of
reward shaping in the reinforcement learning community; in
particular with the interactive approach described in (Raza,
Johnston, and Williams 2015). However, while reward shap-
ing is used to more quickly guide the system towards the
discovery of solutions that maximize an underlying reward
function, we are more interested in the case where the un-
derlying reward function may not be entirely known to the
system.

We propose an interactive human-autonomous agent plan-
ning system that solves the correlated orienteering prob-
lem with location rewards determined by an information-
theoretic function to optimize the probability of target de-
tection within the desired cost budget. Human interaction
is manifested through the specification and updates to a
prior belief on target locations. By iteratively examining
the information-gathering tour and updating the prior tar-
get belief, the human operator is able to guide the sys-
tem to realize plans that both perform well in terms of
quantitative target-detection measures as well as qualita-
tive operator-acceptance measures. This update process is
achieved through minimal interactions that present a greatly
reduced burden compared to, e.g., specifying a complete
prior target belief. While our approach marries state-of-
the-art methods for information-theoretic control (Charrow,
Michael, and Kumar 2015) and correlated orienteering prob-
lems (Arora and Scherer 2016), the contribution of this work
lies in the interaction between a human and the autonomous
planning system.

Problem Statement
The statement of our resource-constrained continuous
surveillance problem is as follows. Given a single mo-
bile robot that is equipped with a visibility-based sensor,
e.g., a camera or laser range-finder and a map of the two-
dimensional environment, construct a cyclical tour of the
environment so that the robot will optimally detect targets
that appear in the environment. We assume that the robot
has access to an uninformed prior on the probability of a tar-
get appearing at any point in the environment, i.e., the target
belief prior. A human operator has access to a higher-fidelity
belief distribution based on their experiences and cues (e.g.,
visual or auditory) in the environment, but it is intractable to
fully specify this distribution for the robot.

We represent the target belief prior as an occupancy grid
g which is a set of G cells {g1, . . . , gG} such that the proba-
bility of there being a target in cell i is p(gi = 1). We assume
that the set of {gi} is independent.

A viewpoint that can be achieved by the robot to make
an observation is vj ∈ SE(2) with vj = [x, y, θ]. The
visibility-based sensor on the robot has a sensor footprint
that can be found by raycasting on the map of the environ-
ment and is given by a set of cells gi ∈ F (vj) as depicted in
Figure 1.

Letting qji be the measurement made of cell gi from view-
point vj , we adopt the target detection model from (Charrow,
Michael, and Kumar 2015),

p(qji = 1|gi = 1) = γ p(qji = 0|gi = 1) = 1− γ

p(qji = 1|gi = 0) = 0 p(qji = 0|gi = 0) = 1.
(1)

Note that this model assumes no false-positive measure-
ments and a true-positive rate of γ.

We can compute the “reward” for visiting a single view-
point R(vj) as the expected number of target detections,

R(vj) =
∑

gi∈F (vj)

p(gi) · p(qji |gi). (2)

While the probability of a target in each cell is indepen-
dent, the probability for a set of measurements given g, e.g.,
p(q|g), is not. However, for a binary sensor with high true-
positive rate γ, we can closely approximate by only consid-
ering the first observation of each cell gi. So, for a set of
observations v = {vj} we can write the reward R(v) as

R(v) =
∑

gi∈Gv

p(gi) · p(qji |gi) (3)

where Gv = {F (v1) ∪ F (v2) · · · ∪ F (vj)}.
We are interested in cyclical information-gathering tours

for continuous surveillance, i.e., the orienteering problem.
A solution to this problem is a sequence of viewpoints
v = [v1, . . . , vN ] where the cost of traversal between two
viewpoints be C(vi, vi+1) so that the total cost for a route
is C(v) =

∑
i∈1,...,N,1 C(vi, vi+1). Given a set of possible

viewpoints V , we can define the orienteering problem as
argmax

v⊂V
R(v)

subject to C(v) ≤ B

v = [vs, . . .] .

(4)
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The choice of cost budget B, controls the frequency of ob-
servations in our continuous surveillance setting. We also
constrain the problem by pre-defining the starting viewpoint
vs to be the current pose of the robot.

From (3), it is clear that the sum of independent rewards
R(vj) is an upper bound for the actual reward R(v), i.e.,

∑

vj∈v

R(vj) ≥ R(v), (5)

thus forcing us to consider (4) as a correlated orienteering
problem (Yu, Schwager, and Rus 2014).

Approach
Our approach revolves around the idea that the target belief
prior g has an overwhelming impact on the solutions to (4)
but in many applications it is unavailable or only partially
defined. While machine learning could offer environment-
awareness and a prediction of g, the amount of training data
required would be large and difficult to collect. Furthermore,
transference of a learned model to a new environment-type
remains an open question in the machine learning commu-
nity. Instead, we propose that a human teammate iteratively
construct a series of target belief priors gk based on his or
her knowledge of the environment and the previous solution
vk−1 to the correlated orienteering problem, i.e., (4).

A high-level view of our human-integrated solution to
the continuous surveillance problem is depicted in Figure 2.
Given an uninformed target belief prior g0, we choose a set
of candidate viewpoints and solve the correlated orienteer-
ing problem (4). This solution v0 is graphically presented
to the human teammate as a set of viewpoints, the under-
budget path that tours these viewpoints, and a visualization
of the observed regions of the environment. The human then
modifies the target belief prior to create g1, review the gen-
erated plan v1, and continue.

The set of candidate viewpoints V = {vj = [x, y, θ]} are
sampled from a regular grid over unoccupied space in the en-
vironment. The reward for each candidate viewpoint, R(vj),
is scored individually based on target detection rate from
the Target Predictor module in Figure 2 as defined in (2).
Because the actual detection rates of novel targets are de-
pendent on other viewpoints, these scores serve as an upper
bound on the reward for visiting viewpoint vj .

While the correlated information-gain based reward func-
tion is sub-modular, typically leading to efficient optimiza-
tion solutions, the addition of a traveling budget constraint
for the correlated orienteering problem makes this prob-
lem non-submodular (Arora and Scherer 2016). We draw
heavily from (Arora and Scherer 2016), splitting the cor-
related orienteering problem into a combination of a Con-
straint Satisfaction and Traveling Salesperson problems to
implement the so-called Random Orienteering (RO) algo-
rithm with some modifications.

The RO algorithm addresses (4) by iteratively explor-
ing subsets of candidate viewpoints v ⊂ V , i.e., the Con-
straint Satisfaction Problem, and then checking to see if
there exists a tour within the cost budget, i.e., the Travel-
ing Salesperson Problem (TSP). We note that the construc-
tion of the edge weights for a TSP in a realistic robotics

problem can be computationally expensive in it’s own right
and involves motion planning with respect to complicated
environments and differential constraints. We address this
problem by (a) doing a lazy evaluation of edge costs for
only the subset of viewpoints being considered, (b) caching
path queries, and (c) leveraging algorithms specifically de-
signed for the “multi-query” setting, e.g., the Probabilistic
Roadmap Method (Kavraki et al. 1996). This allows us to
spend some precomputation effort based on the map of the
environment to speed up later calculations of the cost to
traverse from one viewpoint to another, C(vi, vj). We as-
sume costs between viewpoints to be symmetric such that
C(vi, vj) = C(vj , vi).

Our modification to RO is based on the observation that
the rate of convergence to a solution of the RO algorithm
is influenced by the initial chosen set of viewpoints. We
overcome this by performing weighted sampling of candi-
date viewpoints to initially explore several disparate solu-
tions with high reward upper bounds and continuing with
the one that is under budget and maximizes reward. The
reward R(v) for a candidate viewpoint selection is scored
based on (3) giving an accurate representation of the target
detection rate for a set of viewpoints that may overlap in
their coverage of the environment. The RO algorithm con-
tinues by randomly sampling candidate viewpoints vj ∈ V
updating the active solution v, and evaluating with respect to
the current-best solution tour per (Arora and Scherer 2016).

Results
We are interested in studying the interaction between
a human and autonomous planning system to solve the
continuous-surveillance robotics task described above in
terms of both task performance, i.e., target detection, and
human satisfaction. While rigorous experimental results to-
wards either of these goals is beyond the scope of this work,
in the following section we seek to detail our implemen-
tation of the system described above and provide results
demonstrating the types of interactions that can take place
between a human and this system.

We implement the system depicted in Figure 2 with a suite
of C++ and Python software modules, using ROS1 to pro-
vide messaging, interprocess communication, and common
robotics libraries. A multi-query path planner for comput-
ing edge costs to construct the TSP problem is implemented
based on the Open Motion Planning Library2 and we solve
instances of the TSP problem with the Concorde library3.

Visualization of the environment, current target belief
prior gk, current tour solution, and observed regions of the
environment is through the ROS RViz tool. Custom plugins
for RViz allow the user to edit the target belief prior g by
“painting” regions of higher or lower target probability with
the mouse pointer. The autonomous system generates a new
solution to the information-gathering tour after each user in-
teraction produces a new prior gk. Note that in our examples
to follow, the cost-budget parameter, B, is tuned by hand for

1http://ros.org
2http://ompl.kavrakilab.org
3http://www.math.uwaterloo.ca/tsp/concorde.html
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Figure 3: Example of the effect of human-specified target
distribution information. (a) a route generated from a uni-
form target distribution probability, indicated by the blue
background shading. (b) a route generated with a single hu-
man input (depicted by the red circle in the lower right room)
to alter the target probability distribution. Purple circle indi-
cates tour start/end, red arrows oriented viewpoints, red lines
the path computed, and gray overlay sensor FOV.

each environment such that a tour whose observations fully
cover the entire environment is not possible. In practice, this
constraint would come from mission specifications based on
the expected target arrival rate, desired update rate, or phys-
ical constraints such as platform fuel or battery capacity.

We present a simple, four-room environment as depicted
in Figure 3. Figure 3a depicts an example tour solution gen-
erated from a uninformed uniform prior g0 with no human-
provided knowledge of the target distribution. Because of
the cost budget threshold, B, the map is not fully covered,
but the two rooms nearest to the starting point, and part of
the third, are well-covered. Figure 3b shows the same map
after a single human interaction indicated a higher target be-
lief probability (depicted in the figure and the user interface
as a red circle in the bottom right room). As can be seen, the
solution tour generated nearly completely covers the des-
ignated area of higher target belief. Additional, lower-cost
viewpoints are found by the RO algorithm that are nearly
co-linear with the path from the starting point to the high tar-
get probability area. Importantly, in this case the quantitative
“reward” of the solution in Figure 3a is similar to Figure 3b
with respect to the uniform g0, but Figure 3b qualitatively
provides better coverage of the environment.

Discussion
In this paper, we describe a system whereby a human can
work with an autonomous planning system to find solutions
to a resource-constrained continuous surveillance task for a
robot in complex environments with a realistic sensor model.
This amounts to (1) an efficient solution to the correlated
orienteering problem based on the most recent target belief
prior which affects the reward surface for viewpoints in the
environment and (2) an interface by which the human can
analyze the current information-tour and modify the target
belief prior to guide solutions to the surveillance task.

Our initial results, while qualitative, do provide a promis-

ing outlook on this style of interaction. In particular, we have
shown in Figure 3 how a single human interaction can dis-
tinguish between two cost-constrained solutions that offer
similar performance with respect to a uniform reward func-
tion but drastically different performance with respect to a
“semantic” reward function, e.g., visiting all rooms.

Care has been taken in the development of this work to
build a solution based on capabilities that are readily avail-
able in experimental robotic systems, e.g., occupancy grids
from SLAM algorithms, sample-based motion planning, and
probabilistic sensor models, so that this work can serve as
a gateway to in-depth studies on human interaction with
robotic systems capable of non-trivial autonomous tasks.
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