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Abstract— Real-world surveillance of complex 3D environ-
ments is an extremely challenging problem, especially in the
presence of unknown dangers. In this work we create a novel
ground and aerial autonomous robotic system to surveil a
human-robot team’s surroundings for targets of interest, which
could be e.g., disaster victims, infrastructure inspection, data to
support research or public safety, or threats to the human team
members’ safety. To represent this general case, our system
identifies threats to human safety by surveilling the team’s
surroundings, identifying threats, and notifying the human team
member. We provide an interface that visualizes threat targets
and allows the human operator to create and modify the surveil-
lance plan. We note that this 3D surveillance task resembles the
Art Gallery Problem (AGP) with a time-sensitive route planning
aspect similar to the Traveling Salesman Problem (TSP), both of
which are NP-hard. We incorporate a human operator into the
decision making process of a surveillance system to address the
viewpoint selection and route minimization problems, and to
extract semantic information from the scene to increase search
effectiveness. We construct a system for this collaborative,
human-robot team surveillance task using a low-cost Unmanned
Aerial Vehicle (UAV) and a more-capable Unmanned Ground
Vehicle (UGV). We evaluate the resulting system with a large
experiment set (120 trials) conducted in a real-world, 3D,
cluttered, urban setting and examine the difference a scenario-
specific plan makes to the detection of threat targets compared
to a baseline algorithmically-generated plan.

I. INTRODUCTION

In scenarios where people operate in dangerous environ-
ments in real-world settings, those dangers, coupled with
other essential tasks, may exceed a person’s ability to observe
their surroundings. Furthermore, the task of monitoring the
surroundings may be inherently dangerous. There is therefore
a significant opportunity for robots working with humans in
these scenarios to function as autonomous observation agents
to enhance human safety. The observations could be in search
of disaster victims [1], [2], bridge and infrastructure damage
[3], or data to support scientific research or public safety [4],
[5]. We choose to represent this general case by identifying
threats to human operators in urban environments, and cast
the problem as one of providing situational awareness to
protect humans in dangerous scenarios.

Heterogeneous robot teams are challenging in that they
require the use of diverse, resource-limited platforms to solve
a common task. They also allow for systems that collaborate
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to amplify the abilities of each individual agent. Collection
of observations in a cluttered 3D urban scene may require
a small unmanned aerial system. While the capabilities of
these systems have advanced recently [6], [7], [8], they are
not completely reliable and can be expensive. Furthermore,
in many disaster and search scenarios, ground and aerial
robots will often both be present and have the opportunity
to work collaboratively. In dangerous environments where
resources such as GPS may not be available and speed is
critical, we believe that a simple, inexpensive, and expend-
able COTS UAV, when coupled with a more sophisticated
ground robot, could have significant advantages over current
approaches in terms of speed of operation and reliability.
Using such an UAV in combination with a ground robot
capable of autonomous mapping and navigation, we create
a team capable of surveilling this challenging environment.
By designing such a system and conducting extensive tests
in a practical environment we are able to explore a number
of important issues surrounding heterogeneous robot teams
performing a 3D surveillance task.

In this work, we seek to examine the relationship between
automated and scenario-specific solutions to a complicated,
time-constrained task. First, we observe that solving the
3D surveillance task is NP-hard and requires complete
knowledge of the environment geometry, and conducting
autonomous 3D surveillance in an unknown or partially-
unknown, cluttered, feature-rich environment is extremely
challenging to solve in a real-world setting with time re-
strictions, e.g., identifying a threat before it impacts human
safety. Second, we believe that information from the envi-
ronment can be used to set search locations and priorities
to provide for more efficient (high value, low time cost)
observation, which would increase performance given time
restrictions.

We believe that by building this system we can examine
how a human operator addresses these issues and contributes
to the decision making process of an automated surveillance
system by 1) reasoning about the viewpoint selection and
route minimization aspects of the surveillance task to provide
a successful route for the robots’ patrol, and 2) understanding
scene semantics and perceiving aspects of the environment
to better assign surveillance priorities. Furthermore, we note
that in human-safety systems, human involvement in the
decision making process also enhances trust [9].

Using our autonomous surveillance team, we conduct
extensive experiments in a 3D, cluttered, urban setting.
We evaluate the performance of a scenario-specific surveil-
lance plan alongside a naı̈ve, algorithmically-generated plan.
Through examining the performance of these approaches in



a large-scale experimental study, we can observe and identify
important trade-offs in this complex interaction.

The rest of the paper is organized as follows. We review
work related to the task in Section II. In Section III we
formally define our problem. Section IV details the methods
we used to address the surveillance problem. Experimental
setup and results are discussed in Section V. Finally, we
conclude our paper in Section VI.

II. RELATED WORK

Automated solutions to the path-generation component
of the 3D surveillance task require both a solution to the
Art Gallery Problem (AGP), where a minimum number
of observation points to cover the area is found, and the
Traveling Salesman Problem (TSP), where an optimal tour
of the points is calculated.

Approximate solutions exist to these NP-hard prob-
lems [10]. A method for generating trajectories for UAVs
for complete coverage of the exterior of buildings in urban
environments was presented in [11]. An iterative method for
creating efficient paths that find viewpoints for full coverage
of a 3D surveillance problem was shown in [3], where real-
world validation was made simpler by inspecting known
structures with mostly convex surfaces at a constant height.
We note that our effort is to not only cover the exterior of
objects but also the interior of highly concave surfaces (i.e.,
room interiors).

Human control of multi-robot teams has been studied
in a variety of applications, including search and rescue
(SAR) type tasks. In [12], human control of multiple ground
and aerial robots in a search task was demonstrated, with
the goal of providing integrated control for minimal hu-
man intervention. Degrees of multi-human shared control of
multi-robot teams’ navigation and victim localization for a
search and rescue task were explored in [13]. Recently, [14]
used hierarchical reinforcement learning to create a control
architecture to allow a robot team to learn to explore and
identify victims in an urban SAR task. In our work, we
adapt the model of using a human operator to help solve
the planning problem in a highly challenging environment.

Previous work has also identified the difficulties in un-
derstanding the behavior of targets operating in the environ-
ment [15] when solving the surveillance coverage problem.
Semantic understanding of scenes is known to be challeng-
ing [16], [17], and a human can easily perceive contextual
aspects of the environment that a robot may not. Further,
human involvement in decision making has been shown to
engender trust [9]. Considering this, for this work we have
elected to use a human-in-the-loop approach to generate
and modify paths. This design will allow us to examine
algorithmically generated solutions to the 3D surveillance
task coverage problem in combination with a human in future
work.

III. PROBLEM

We consider an arbitrary three-dimensional environment
represented as the open subset E ⊂ R3. The environment is

populated with an unknown number of targets Y = {y ∈ E }
representing threats that must be detected with a sensor
positioned by our robotic system. We define the achievable
sensor placements to be an open subset in the special
Euclidan groupW ⊂ E ×SO(3). The boundary of E , ∂E , is
induced by objects that limit sensor visibility. Furthermore,
we assume a camera-like sensor with the following definition
of visibility:

Definition 1: (Visibility for a camera-like sensor) A target
y ∈ E is visible from a sensor placement w ∈ W if the
following conditions are true:

1) Line of sight constraint: The line segment S(w,y)
from the sensor to the target does not intersect ∂E .

2) Range constraint: dmin ≤ d(w,y) ≤ dmax where
d(w,y) is the Euclidean distance between w and y.

3) Sensor field-of-view constraint: the segment S(w,y)
must lie within the cone defined by the sensor’s field-
of-view.

We note that our problem formulation up to this point mir-
rors that of the extended art-gallery problem [18]. However,
rather than require that we find a set of viewpoints to observe
the entire environment, we would like to find a smaller set
of viewpoints that maximize our likelihood of detecting the
targets Y within a maximum time limit τ . This better aligns
our problem statement with that of surveillance where there
is a timeliness objective that must be satisfied.

To address the timeliness issue, we start by recognizing
that targets will not be located uniformly across the environ-
ment but will instead seek to avoid detection. Thus, we model
the target locations y as a random variable with a probability
distribution Dy(∂E ,T ). Specifically, the distribution Dy is
a function of features of the environment boundary ∂E that
limit visibility, e.g., the targets are hiding, and threat-cues,
T , e.g., visual features by which the target “gives-away” its
location.

We finish addressing the timeliness objective by noting
that simply computing a list of viewpoints {wi ∈ W}
that satisfy some probability of target detection based on
Definition 1 is inadequate. Indeed, the time to traverse from
one viewpoint to another δt(wa,wb) and the total time to
traverse all viewpoints

∑
δt(wi,wi+1) are important when

we consider that solutions must execute within the maximum
time limit τ . Thus, we must also choose an ordering that
visits {wi ∈ W} in an efficient manner, i.e., the traditional
traveling salesman problem, and a feasible velocity profile
for the search-route.

Finally, we can state our problem as:
Problem 1: For a given environment E ⊂ R3, its bound-

ary ∂E , and threat-cues T , find a sequence of viewpoints
{wi ∈ W} and velocity-profile {δt(wi,wi+1)} such that∑
δt(wi,wi+1) < τ . The probability that every target in Y

is visible according to Definition 1, per the threat distribution
Dy , should be maximized.

IV. APPROACH
We address the problem in an experimentally-validated

manner using a multi-robot team. At a low-level, this team
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Fig. 1. A viewpoint in the route, wi = (xi, yi, θi) specifies the location
of the ground robot (xi, yi), the height of the aerial robot zi, and the
orientation of the aerial robot θi.

should be capable of creating a high-fidelity 3D map of
the environment, localizing camera observations in the en-
vironment, and identifying or detecting targets from those
observations. At a high level, the team must be capable of
generating routes that maximize the probability of target visi-
bility per Problem 1, achieving good performance in a highly
complex 3D environment. This work presents a framework
for experimental study of this challenging problem.

We propose that a human operator working with a col-
laborative air-ground team of robots is well-suited to the
observation task described above in the complex three-
dimensional environments that are relevant to our applica-
tion. An autonomous ground robot offers the computational
and sensing capabilities to quickly provide a spatial model
of the environment, e.g., a colored point-cloud or texture-
mapped 3D mesh. The autonomous aerial robot, while lim-
ited in computation and sensing, is able to provide vantage
points inaccessible to the ground robot.

We propose a method for collaborative air-ground navi-
gation that allows these robots to work together. In order to
solve Problem 1, we then define an observation route for the
collaborative air-ground team that consists of a sequence of
viewpoints and velocity profile that the system must execute
(Fig. 1). Finally, the human operator interacts with the team
to create and modify the observation route according to
higher-level semantic understanding he or she has about the
task.

A. Autonomous robot team

Our collaborative air-ground team of robots consists of
a sensing and computation-limited unmanned air vehicle
(UAV) and an unmanned ground vehicle (UGV) capable
of autonomous mapping and navigation (Fig. 2). These
platforms work together in a challenging three-dimensional
environment to build a model of the space, navigate to a

Fig. 2. The air-ground robot team operating in the 3D urban environment.

series of viewpoints, and collect geo-referenced images with
the purpose to detect and localize threats to a human operator.

The UAV is the Parrot AR.Drone 2.0 1 controlled via
the Robotic Operating System (ROS) [19] ardrone autonomy
package 2, with both forward and downward-facing cam-
eras. It is capable of local flight-stabilization from onboard
inertial measurements, optical flow on a downward facing
camera, and SONAR-based height measurements. While this
platform accepts body-frame velocity inputs, it is not able
to detect obstacles in the environment or maintain a good
estimate of its global pose. The platform is capable of
onboard detection of fiducial markers and can efficiently
stream video from the forward or downward-facing camera
over its wireless communication link.

The UGV is a custom-built 4-wheel skid-steer ground
robot developed at the Army Research Laboratory (ARL).
It is equipped with processing payload containing a Quad-
Core Intel i7 ICOM express board and a 256 GB solid-
state drive (SSD). The UGV collects 3D point cloud data
by nodding a Hokuyo UTM-30LX-EW LIDAR 3 with a
Dynamixel MX-28 servo 4. The Hokuyo LIDAR has a 270◦

field of view, 30 m range, and 1 mm resolution. Accurate
local state information is achieved using a MicroStrain 3DM-
GX3-25 inertial measurement unit (IMU) 5. We leverage
the ROS infrastructure to implement custom algorithms
for Simultaneous Localization and Mapping (SLAM) and
waypoint-navigation [20].

B. Collaborative air-ground navigation

Because our UAV lacks reliable localization capabilities,
a fiducial is mounted to the top of the UGV that can be
detected by the UAV. By communicating with the ground

1http://ardrone2.parrot.com/
2https://github.com/AutonomyLab/ardrone_autonomy
3http://www.hokuyo-aut.jp/02sensor/07scanner/

download/products/utm-30lx-ew/
4http://www.trossenrobotics.com/

dynamixel-mx-28-robot-actuator.aspx
5http://www.microstrain.com/inertial/3DM-GX3-25



robot, the aerial robot is able to update its pose in a
global reference frame and compute controls to stay centered
over the ground robot. Solutions to Problem 1 consist of
viewpoints wi = (xi, yi, zi, θi) that must be achieved by
the aerial robot as depicted in 1. In order to navigate to a
viewpoint wi, we employ the following strategy.

The UAV begins in a localized state over the UGV. The
UGV plans a kinematically-feasible obstacle-free path to
the (xi, yi) coordinates of the viewpoint wi, i.e., under the
desired viewpoint. The UGV then drives its computed path
with the UAV following by moving to maintain position
above the UGV. If, at any time the UAV loses sight of the
UGV, it communicates with the UGV to stop progress and
wait for confirmation to proceed. The UAV begins searching
for the UGV in the last observed direction and sends a
resume signal after successfully detecting the UGV.

When the (xi, yi) coordinates of viewpoint wi are
achieved by the ground robot, it pauses and communicates
with the UAV that wi has been reached. The UAV then
controls to the specified altitude and orientation (zi, θi) for
that viewpoint. When the UAV has captured an image at
the desired viewpoint wi, it communicates with the UGV to
navigate to the next viewpoint wi+1. During experiments,
the operator can manually adjust the UAV’s flight to prevent
a safety incident, or in the event that the UAV loses track of
the UGV and cannot relocate it.

C. Target detection

Targets for this experiment consist of AR.Drone fiducials
and are detected onboard the UAV and transmitted via the
AR.Drone API. Detections are only recorded when the UAV
is over the UGV for localization of the target. Detections
are filtered and presented to the operator in Rviz 6 using
text and shape markers. Clustering of target detections is
performed at a 1m distance. To address noise, angle, and
lighting variations, a moving average filter was applied to
the depth (distance to target) component of the detection. To
be considered a viable target location, at least 10 consistent
readings are required; less than 10 readings are ignored.
Confidence in the location is expressed to the operator in
Rviz as n/50, where n is the number of consistent readings.
Figure 3 shows example visualized target detection results.

D. Observation route

We define an observation route to consist of “viewpoints”,
({wi ∈ W}, from Sec. III) and a velocity profile that
affects the time it takes to traverse viewpoints δt(wi,wi+1).
While the speed of the ground-air system when traversing the
(x, y) component of a viewpoint is fixed to be the maximum
reliable speed for stable control, the rotational velocity ω of
the aerial platform when achieving the θi of a viewpoint is
controllable and affects both the reliability of a detection and
time to complete the observation route – there is a trade-off
that must be considered when choosing this parameter. Thus
we append rotational velocity ω to the observation route so
that wi = (xi, yi, zi, θi, ωi).

6http://wiki.ros.org/rviz

Fig. 3. Visualized detection results, rotated to view the building from the
interior. Small yellow markers indicate target detection readings, large red
markers indicate clusters (i.e., target location estimations).

1) Route Duration: As observation routes are generated,
we calculate the time required to traverse from one viewpoint
to the next, δt(wi,wi+1). While computing δt(wi,wi+1)
for a deterministic system would be straight-forward and
based solely on the distance traveled divided by the speed
set points, this is clearly not the case for a real-world system.
Uncertainty arises due to variability of the path the ground
robot will take due to obstacles in the environment, noisy
estimates of the relative pose of the ground and aerial robots
and stabilization of the aerial robot. All of these factors
combined make it challenging to predict traversal times
with accuracy. Since a full uncertainty analysis and robust
planning framework are beyond the scope of this work, we
adopt an empirical approach to estimate the expected value
of traversal cost under a decoupled motion model.

We collected experimental data of the system in several
modes – UAV tracking UGV while controlling to the (x, y)
component of a viewpoint; the UAV changing altitude to
control the z component of a viewpoint; the UAV changing
heading to control the θ component of a viewpoint. We found
that the UAV rotation performance is dependent upon altitude
so we adopt a linear model for expected time to control the
heading of the aerial platform.

UAV rotation was measured at both first (1.5m) and second
(2.8m) stories, at each speed (ω ∈ {1, 2, 3} rad/sec). Times
are shown in Table I, where (zmax−zi) scales the rotational
cost component by the difference in the maximum operating
altitude and the current operating altitude, because rotating
at lower heights is more time-consuming as the UAV must
make more frequent adjustments to maintain its position.

TABLE I
DURATION MEASUREMENTS PER BEHAVIOR.

Behavior Duration (s)
UAV Z traversal ‖zi+1 − zi‖ · 6.5

UAV rotation 8 · ‖θi+1 − θi‖ · (zmax − zi)/ωi

UAV+UGV traversal 2 · ‖(xi, yi)− (xi+1, yi+1)‖



(a) Control viewpoints

(b) Human-generated checkpoints

Fig. 4. Viewpoint generation environment using RVIZ. (a) Automatically
generated uniform coverage viewpoints viewpoints and (b) and human-
generated viewpoints.

2) Scenario-specific route generation: The system al-
lows the operator to create scenario-specific routes, where
the operator 1) leverages understanding of the layout of
the environment to generate sequences of viewpoints that
maximize visual coverage while minimizing traversal and
rotational costs and 2) interprets the visual cues to better
prioritize viewing positions to ensure the viewing of higher
probability locations given the constraints. Currently, this
is done through an interface, but our testing methodology
would extend to autonomously generated routes as well.

To easily generate and interact with this scenario-specific
route, the operator is presented with a 3D representation of
the environment as depicted in Fig. 4. While there do exist
state-of-the-art technologies for autonomously generating
photo-realistic 3D models of real-world environments, the
implementation of such a system is beyond the scope of this
work. The ground robot builds a three-dimensional point-
cloud and traversal map of the environment; however, for
the purposes of interpretability in testing our human-robot
surveillance system, we present a 3D model to the operator
that has been enhanced manually.

The interface allows the operator to quickly and easily add

(a) Test environment

(b) Test environment - labeled

Fig. 5. Urban testing environment. (a) depicts the complicated nature of
the scene – targets can be hidden in any of the doors or windows. (b) Rooms
are labeled to facilitate experiment design, setup, and execution.

and manipulate viewpoints including the position (xi, yi),
heading θi, and rotational velocity ωi. The intention of this
system is that is extensible to future work where the operator
may modify automatically generated routes or change routes
in an online setting to respond to new information about the
environment.

V. RESULTS AND DISCUSSION
A. Environment

All experiments take place in an indoor test facility
containing a multi-story urban street scene. The problem
is made three-dimensional by utilizing the first and second
stories of two perpendicularly oriented structures. The search
team operates on the street outside the buildings’ two per-
pendicular external walls, and searches inside the buildings
for targets by looking through 11 windows and 2 doorways.
The visual and sensory texture of the environment is enriched
with curtained windows, fake flora, textured wall placements,
sandbags, steel barrels, and various objects placed inside
rooms. The space behind each window or doorway is con-
sidered 1 room unit, giving 13 room units (Fig. 5); targets
closest to a window or doorway are considered inside that
corresponding “room.”

B. Control route generation

A naı̈ve approach to the surveillance route was created as
a baseline control against which to compare our algorithm.
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Fig. 6. Snapshots from a trial for threat distribution 1 and target placement 1. (a)–(e) depict the progress of the collaborative air-ground team as it makes
observations in the environment. (f) shows an overhead view of the final target detections. Note that even though there are eight detected targets in this
example, two of them are low confidence. Multiple localizations in the same room are treated as a positive detection.

By considering a “sphere-of-protection” model around the
operator, a route is generated that uses high and low positions
to scan the top and bottom stories of each wall from a
central location. For each high and low position pair, the
team assumes a position ∼1.5m away, perpendicular from
the center line of the wall, and then scans +/- 45 degrees to
the left and right of that position, which allows it to view all
windows on the wall from a central point.

C. Threat distribution

One crucial idea about real-world application of a surveil-
lance task is that a human team member may be able
to perceive threat-cues about the environment that would
indicate areas of higher likelihood of a target being present as
modeled in the T term of our problem statement in Sec. III.
Such cues would be highly task and situation dependent. For
example, in a disaster response scenario, the human could
perceive signs of life, written messages, disturbed debris, etc.
In our threat-detection scenario, we use the term “threat” to
indicate probability of target presence.

Since a general model of target probability would be quite
complex for an arbitrary three-dimensional environment,
we adopt a discretized model based on rooms in our test
environment and introduce the variable r to indicate the
relative level of threat for each room. We use two simple cues
observable to the human operator to indicate a higher threat:
a red light (symbolizing fire) indicating a high (r = 10)
threat, and a white light (symbolizing smoke) indicating a
medium (r = 5) threat; no cue indicates a normal (r =
1) threat. Because our purpose for this work was not to
study a person’s ability to perceive threat, the meaning and

associated probability was made known to the human during
route generation.

D. Experimental results

We conduct a set of experiments to explore and compare
the performance of our collaborative air-ground system for a
naı̈ve surveillance route based on uniform models of threat
and no understanding of complex environment geometry with
a scenario-specific route where the operator can leverage
a three-dimensional model of the environment and “threat-
cues” placed in the environment.

Given the threat distribution T , the operator generates a
route. In our threat-based use case, we assume a short time
limit τ for each search. Therefore, in order to make a valid
comparison, the cost of the scenario-specific route must be
less than or equal to the cost of the naı̈ve control route. Note
that time to generate routes are not included this calculation,
as the actual cost of route generation would be highly
specific to the application, and dependent on the interface
and the operator. Because this work presents and examines
the system, routes are generated by a single operator familiar
with the interface. Future work to examine the performance
of the system with multiple human participants is planned.

The experimental parameters are tuned such that ex-
haustively searching each window is not possible; instead,
the human operator must decide where to direct the robot
teammates for maximum effect.

A set of target placements Y is generated after routes are
created for a threat distribution. For n = 5 targets, target
locations are generated via a weighted-random likelihood,
using the threat distribution’s cue r values as weights, with



Fig. 8. Histogram of performance of control and scenario-specific routes.

no more than one target placed per room. In addition, to
vary the difficulty of observing a target, for each ith target
location, a difficulty di ∈ {easy, hard} is generated with
equal likelihood. Easy locations require target placement
directly inside of a window or doorway opening, close to and
centered on the opening. Targets in hard locations are placed
to the side, set back (∼.5m) from the opening, obscured (by
curtains, plants or other obstacles), or a combination thereof.
Because we are not attempting to solve a detection problem,
we ensure that all targets are well-illuminated and facing the
window/doorway opening.

Our experimental data consists of results from three threat
distributions, with two target placement sets per threat distri-
bution. In each target placement set, 5 targets were placed in
13 rooms. For each set of target placements, 10 runs using the
baseline control route and 10 runs using the scenario-specific
route were performed, for 120 runs total. Table II shows the
configurations of runs, cues, probabilities, and placements.
Figure 4 shows example control and scenario-specific routes
for the first threat distribution. Figure 6 depicts the progress
of a single experimental trial where the system successfully
locates all of the targets in the environment.

Fig. 7 shows a complete breakdown of the results of all
120 runs. Our results show that, as expected, a scenario-
specific route was able to outperform the baseline control
in almost all aspects. There were, however, examples where
the scenario-specific route missed easy targets. For example,
in Threat Distribution 2 - Target Placement 1, in 2 of
10 runs, the scenario-specific route missed an easy target
that the baseline route found. We note that these happened
in situations where randomized target placements did not
correspond to the higher-priority threat positions. In these
situations, because of cost restrictions, the human made a
decision to select a route that did not fully cover the less-
likely target location. This highlights a key decision point
that could be impacted by future work on intelligent route
generation and human interaction.

A histogram of target detection counts is shown in Fig. 8.
While performance of the system does exhibit variability
due to stochasticity present in the control and sensing,
there is a distinct shift in the performance distribution for
scenario-specific routes. We believe that despite the high
level of randomness in this complex environment, the human
operator is able to implicitly choose patrol routes that are

more reliable. We also note that the average number of
targets detected by the baseline control route was very near
the number of “easy” targets in the target placement set,
although not in all cases were the targets detected in easy
placement locations. It is important to note that in only 55%
of all runs did the scenario-specific route detect all targets.
We observe that the trade-off between search priorities based
on observed environmental cues and time cost can be critical
in situations where human safety is at risk.

While this work is focused on creating a capability for
a human operator to interact with and create surveillance
routes, and not the extent to which we can maximize per-
formance, we believe these results show great promise for
exploration in future work for this issue and the many other
issues surrounding this challenging and complex problem.

VI. CONCLUSION
In this paper, we create a system using ground and aerial

robots to execute patrol routes to surveil a complex 3D envi-
ronment, identify threats and visualize them for the operator.
We examine the contributions a human operator can make to
a surveillance task by making decisions regarding viewpoint
selection and route cost minimization and interpretation of
scene semantic information to determine priorities and create
a successful route for the robot team members’ patrol.
Through a large number of experiments, we demonstrate
that, in the face of time constraints, while a route decided
by a human is able to outperform a naı̈ve algorithmically-
generated route, important trade-offs exist that can impact
human safety.

Furthermore, we consider the specific problem statement
and framework presented in this paper to be a valuable
cornerstone for future experiments exploring the interactions
that take place when a human is teamed with an autonomous
robotic system. Specifically, this work will allow us to further
examine the influence of time-critical decision making on
surveillance efficiency. We plan to further investigate this
in the context of highly complex environments, where au-
tonomous route planning and perception of environmental
information are challenging, and examine what improvement
a human operator can contribute to an algorithmically gen-
erated route.
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