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Abstract— Real-world disaster response or search and rescue
operations require the seamless interaction of multiple teams
and agencies. As multi-robot systems become more frequently
used for disaster response due to the inherent dangerous
environments, these systems must be controlled in way that
balances the accomplishment of their mission with interaction
with neighboring teams. In this paper, we address this problem
by examining the balance of mission and comprehensibility. By
mission, we refer to the overall task of the multi-robot system,
which in a disaster response scenario is often searching an area
and communicating results back to rescuers. By comprehensi-
bility, we refer to a multi-robot system arranging itself in a
way that a neighboring observer can understand what roles
its members play, and react accordingly. When mission and
comprehensibility are properly balanced, multi-robot teams will
be more effective at working alongside one another. We propose
a system of control laws for two robot roles, hubs and sensors,
which provide communication and sensing, respectively. We
propose additional control laws to maintain an understandable
formation. Through extensive simulation of a variety of multi-
robot system sizes and formations, we examine the effect of
balancing mission and comprehensibility on concrete metrics
for sensor coverage and role understanding.

I. INTRODUCTION

Multi-robot systems are being used to address a multitude
of tasks for disaster response and search and rescue due
to their ability to operate in hazardous environments [1].
As robots can continue to work in areas with radiation,
smoke, high temperatures, risk of structural collapse, or other
dangers, they are crucial to efforts to respond to disasters and
search and rescue for survivors. In order to address disaster
response in a large environment, robots must work together
in teams, with individual robots performing distinct roles [2].
Heterogeneous multi-robot teams enable rescuers to respond
to a variety of physical and technical challenges in disaster
areas.

In disaster response scenarios, multiple agencies may be
addressing the same problem [3]. For example, in response to
a hurricane, the National Guard (NG) from the United States
may be searching for survivors alongside local authorities.
While both organizations may be utilizing robots to perform
the search, due to the urgency of the response and the
technical challenges involved in sharing data, the robot
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Fig. 1. We explore the effect of controlling a multi-robot system with the
goal of accomplishing a mission (left side) such as sensor coverage, versus
remaining comprehensible (right side). On the left side, team member roles
are difficult to identify but the overall sensing area (marked by red circles)
is high. On the right side, observers can comprehend the team structures
as distinct central hubs emerge, but at the expense of overlapping sensing
areas. When multiple multi-robot teams need to cooperate in an environment
without communicating with each other, being able to understand the other
teams is crucial.

teams are unlikely to be able to communicate with one
another. In a scenario like this, the multi-robot teams need
to develop shared situational awareness [4] - the NG robots
need to comprehend the roles of the local robots in order to
determine where they might search next, and accordingly,
the local robots must comprehend the roles of the NG
robots in order to respond in kind. If roles are correctly
understood, organizations can avoid overlapping their search
areas and optimally distribute resources. Both multi-robot
systems must consider the balance of their mission (searching
for survivors) with maintaining comprehensibility in order to
maximize the overall mission area, as illustrated in Figure 1.

The problem of controlling a heterogeneous multi-robot
team in order to be understandable to observers has not been
previously addressed. While applying multi-robot systems to
disaster response and sensor coverage has been extensively
researched [5]–[7], solutions have relied on single points
of coordination, assumptions that multiple agencies use
compatible tracking software, or seamless communication
even in complex disaster areas. Similarly, the problem of
understanding multi-robot systems has been addressed from
the perspective of static formations [8], but has not been
addressed to maintain this comprehensibility while accom-
plishing a mission. Addressing the balance of mission and
comprehensibility will enable multi-robot teams to more



effectively work alongside one another.
In this paper, we propose a principled examination of

balancing mission and comprehensibility in multi-robot sys-
tems, where heterogeneous multi-robot teams within the
system cannot communicate with each other. We introduce
a group of basic control laws that define each robot’s move-
ment in regard to accomplishing the mission or maintaining
a comprehensible formation, and combine these basic control
laws by parameterizing the balance of the ‘mission’ laws and
the ‘comprehensibility’ laws. We then thoroughly examine
the impact of this balance on a variety of multi-robot system
sizes and formations.

This paper has 2 important contributions.
1) First, we introduce the problem of controlling het-

erogeneous multi-robot teams alongside one another
without communication, where balancing accomplish-
ing the mission and maintaining a comprehensible
formation to observers are both critical.

2) Second, we describe basic control laws that enable the
evaluation of balancing the competing motivations of
mission and comprehensibility, enabling the study of
the impact of this balance.

II. RELATED WORK

A. Multi-Robot Systems in Search and Rescue

Multi-robot systems have become essential for search and
rescue and disaster response applications [3], [9]. While
in some cases robots have been utilized to work directly
alongside humans [10], [11] or are operated remotely [1], [4],
increasing the autonomous capabilities of disaster response
robots has seen recent work [2], motivated by benefits
such as requiring fewer operators and tolerating network
disconnections [12]. In order for rescue robots to operate
fully autonomously, they need the capability to understand
and work alongside robots that they may not be able to
communicate with.

While specialized disaster response robots are still an
active area of research and development [13], heterogeneous
teams of simple robots have become the focus of most real
world disaster response (e.g., to earthquakes [14]). Hetero-
geneous teams not only provide multiple options to explore
an environment (i.e., ground robots can access areas aerial
robots cannot, and vice versa) [15], but offer redundancy
[16] and different technical capabilities [17]. Heterogeneous
teams have paired ground robots and aerial robots [18] and
aerial robots and underwater robots [7].

B. Multi-Robot System Sensing and Control

In this paper, we address the specific search and rescue
problem of observing an area while maintaining commu-
nication with teammates, a topic that has seen extensive
research as multi-robot sensor coverage [19], [20]. Sensor
coverage has been approached by various methods, such as
optimizing density functions [21], partitioning environments
[22], or estimating information gain [23]. Additionally, many
works have examined accomplishing this under communi-
cation constraints. Different forms of restrictions have been

studied, such as maintaining line of sight between robots [24]
or controlling movements to increase wireless connectivity
[25]. Finally, sensor coverage has been evaluated with real-
world sensor limitations [26] or power limitations [27].
Despite this extensive research, the problem of performing
sensor coverage while following an understandable formation
has not been addressed. Comprehensibility is as important
a limitation in multi-robot systems as camera or power
considerations.

III. APPROACH

We consider the specific problem of multiple heteroge-
neous multi-robot teams operating in a shared environment,
where these teams have a shared mission of maximizing
the sensor coverage of the environment, but are only able
to communicate to fellow team members and not between
teams. Each heterogeneous team contains two types of robots
playing distinct roles, with one type acting as hubs and the
second type acting as sensors. Hubs are robots with the
capability to communicate over long range (e.g., back to
human rescuers). All hubs, regardless of their team, follow
the same control laws. Sensors are robots with the capability
to provide observations of an area around their location. As
with hubs, all sensors also obey identical control laws.

Each team can work to perform its mission, but needs to
also anticipate the actions of neighboring allied robots as they
are working towards the same overall goal. Importantly, the
overall mission is maximized if allied robots do not work on
the same task - e.g., it is inefficient for a sensor from team i to
observe the same area as a sensor from team j. For example,
if a sensor from team i believes that a robot on team j is a
sensor, it should move away from it. If this belief is incorrect
- if, in fact the robot on team j is a hub - then an area is
now not being observed. In order to facilitate accurate role
understanding, teams can also work to be comprehensible -
that is, to maintain a formation that allows neighboring team
to understand what roles are being played by which robots.

Overall, we consider the problem of balancing the need
to make positional changes to accomplish the mission in
a shared work environment with the need to follow a
comprehensible formation so that allied teams can correctly
anticipate robots’ behavior without direct communication.

Notation. We consider a scenario with M teams, where
Nm is the number of robots on the m-th team and N is the
total number of robots. The i-th robot has the position pi

(or p(t),i at time t), and movement updates are denoted with
ui, with ui

mission and ui
formation respectively indicating

movements towards the mission and towards the formation.

A. Accomplishing the Mission

In this section, we consider the control laws governing the
movement updates umission for the hub and sensor roles. For
these updates, we break the mission into two parts, which
are specifically performing the sensing task and maintaining
communication among the members of the multi-robot team.

ui
mission =

ui
task + ui

communication

2
(1)



As a first trivial note, we determine that the robots acting
as hubs possess no direct role in the overall mission of
maximizing sensing observations, so the control law to
update their position here is null:

ui,hub
task = 0 (2)

However, they play a key role in maintaining communica-
tions, meaning that their control updates for communications
uhub
communication are crucial. In order to maintain communi-

cations, we calculate a sum of vectors to or from neighboring
hubs on the same team, defining the movement update for
the i-th hub in relation to the j-th hub as

ui,hub
communication =

N∑
j=0,j∈HUBS,team(i)=team(j)

vij (3)

where vij is defined as

vij = pj − pi if ‖pj − pi‖ > d (4)

or

vij = pi − pj if ‖pj − pi‖ <= d (5)

where d is a communications threshold.
For sensors, control laws are needed to both perform their

task and to maintain communications. We first define a task-
focused control law, in which sensors are motivated to move
away from other sensors in order to increase the total area of
observed by sensors. Specifically, sensors utilize a distance-
weighted sum of vectors that moves sensor i away from other
sensors:

ui,sensor
task =

N∑
j=0,j∈SENSORS

pi − pj

‖pi − pj‖
(6)

Importantly, we note that this control law applies to robots
that the i-th robot believes are sensors, based on its under-
standing of neighboring multi-robot systems. This belief may
or may not be correct.

In order to maintain communication between a sensor and
the remainder of its team, it needs to maintain a minimum
connection distance to the nearest hub robot belonging to its
team. We first identify this nearest hub to the i-th sensor,
located at ph. The i-th sensor then moves in the direction of
this hub:

ui,sensor
communication =

ph − pi

‖ph − pi‖
(7)

As above the movement update based on the mission is
based on the values of the task update and the communica-
tions update, and is scaled to unit vector length if necessary:

ui
mission =

ui
task + ui

communication

2
(8)

ui
mission =

ui
mission

‖ui
mission‖

if ‖ui
mission‖ > 1 (9)

B. Maintaining a Comprehensible Formation

In this section, we consider the control laws that cause
a multi-robot team to maintain a comprehensible formation.
Specifically, we design a formation for each variously sized
multi-robot team, identify the current team’s displacement
and rotation from the goal, and generate a goal point for
each robot.

For each hub, we generate a goal point gi for the i-th
robot that is either in line with other hubs (as seen with the
triangle markers in Figure 2(b)) or 90◦ from other hubs (as
in Figure 2(c)). For sensors, we identify the nearest hubs,
and generate a goal position gi that is a specific angle from
these hubs (again, as seen in Figures 2(b) and 2(c), depicted
with circular markers).

For both robot roles, the movement update is defined as

ui
formation = gi − pi (10)

As with the mission-based movement update, the for-
mation movement update is scaled to unit vector length if
necessary:

ui
formation =

ui
formation

‖ui
formation‖

if ‖ui
formation‖ > 1 (11)

These comprehensible formations are also utilized by
neighboring teams for role understanding. As all formations
used are focused on hubs being centrally located and sensors
being located externally, we propose a spatially-based feature
for each robot dependent on its position in its team. Each
robot is represented by its distance from the centroid of its
multi-robot team, and a k-means clustering approach is then
used to divide observed teams into two groupings. The larger
set of groupings is determined to be the sensors, and the
smaller set of groupings is determined to be the hubs.

C. Balancing Mission and Comprehensibility

Given the described movement updates umission and
uformation, we can update the position of each robot ac-
cording to the following equation:

p(t+1),i = p(t),i + λu
(t),i
mission + (1− λ)u(t),i

formation (12)

where λ is the key hyperparameter that enables the balancing
of mission and comprehensibility.

By formulating movement updates in this weighted man-
ner, we enable the evaluation of the key problem we pro-
pose - how does balancing the mission of a multi-robot
team versus the coherence of a multi-robot team effect the
overall accomplishment of the goal? We propose that tuning
the hyperparameter λ, where higher values result in more
importance towards the mission and lower values result in
more importance towards the formation, will provide insight
into this problem.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We consider two metrics for multi-robot systems as we
evaluate the balance of mission and comprehensibility.



(a) Mission (b) Comprehensibility (c) Comprehensibility

Fig. 2. Various multi-robot system configurations. Different colors depict
separate teams, while hubs are represented with triangles and sensors are
represented with circles. Figure 2(a) shows a multi-robot system solely
valuing the sensing mission. Figure 2(b) shows the same multi-robot system
when it values maintaining a comprehensible formation. Figure 2(c) shows
an example of a larger multi-robot system maintaining a comprehensible
formation.

• First, we consider the coverage area achieved by the
multi-robot system. For each robot acting as a sensor,
we consider a circular area determined by a sensing
range parameter. We determine the overall area sensed
by the multi-robot system by summing these areas,
accounting for overlaps among sensing areas.

• Second, we consider the role understanding attained by
each team. We consider the overall accuracy of the role
classification, so if team A classifies 5 members of team
B and team B classifies 5 members of team A, the
accuracy is reported as a percentage of 10 multi-robot
team members.

In order to understand the effects of the λ parameter,
we conducted experiments on simulated multi-robot systems
consisting of various numbers of teams, as well as various
numbers of hubs and sensors per team. For each multi-robot
system, we define a goal formation, with Figure 2 showing
examples. Figure 2(a) shows a multi-robot system that is
solely focused on the mission (with λ = 1). Figure 2(b)
shows a multi-robot system of the same size, solely focused
on its formation (λ = 0). This formation creates a backbone
of hub robots, with sensors acting as spokes at the end. A
comprehensible formation is shown for a larger multi-robot
system in Figure 2(c), where hubs form a square backbone,
and sensors again act as spokes outwards.

For multi-robot system sizes, we specifically evaluate on:

• Small Multi-Robot Systems: These systems have each
team consist of two hubs and four sensors. Their for-
mation is based on a straight axis between the two hubs.

• Large Multi-Robot Systems - Line Formation: These
systems consist of teams which each employ four hub
robots and eight sensor robots. Their formation is again
based on a straight axis connecting the four hubs (the
hubs form a line).

• Large Multi-Robot Systems - Square Formation: These
systems again consist of teams which each employ
four hub robots and eight sensor robots. However, their
formation is based on a square formation of the hubs,
with sensors acting as spokes outwards.
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(a) 2 Teams (2 Hubs, 4 Sensors Each)
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(b) 3 Teams (2 Hubs, 4 Sensors Each)
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(c) 4 Teams (2 Hubs, 4 Sensors Each)

Fig. 3. Coverage and role understanding as λ increases from 0 to 1.
Results shown for small multi-robot systems, with each team consisting of
two hubs and four sensors. Figures 3(a)-3(c) show results from two to four
teams, respectively.

B. Small Multi-Robot Systems

We first consider small multi-robot systems, with each
team consisting of two hubs and four sensors. We consider
systems of two to four teams, with quantitative results seen
in Figure 3. For these systems, the set formation consists of
two central hubs in a line, with sensors positioned outwards
as spokes (with Figure 2(b) as an example).

For each set of systems across the two to four teams, we
can see a consistent pattern of coverage area increasing with
the value of λ while the role understanding decreases accord-
ingly. While the crossover points vary slightly on the exact
value of λ where they occur, we can see that the highest value
area for both coverage area and role understanding occurs
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(a) 2 Teams (4 Hubs, 8 Sensors Each) - Line
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(c) 4 Teams (4 Hubs, 8 Sensors Each) - Line

Fig. 4. Coverage and role understanding as λ increases from 0 to 1.
Results shown for large multi-robot systems in line formation, with each
team consisting of four hubs and eight sensors. Figures 4(a)-4(c) show
results from two to four teams, respectively.

when 0.25 < λ < 0.5. When λ decreases below this range,
we see only small increases in role understanding, while
risking large drop offs in coverage area. When λ increases
above this range, we see decreases in role understanding,
while coverage area stagnates. Based on these results, trend-
ing multi-robot control towards comprehensibility in systems
of this size maximizes role understanding without sacrificing
the mission of sensor coverage.

C. Large Multi-Robot Systems - Line Formation

Next, we consider large multi-robot systems, with each
team consisting of four hubs and eight sensors. We consider
systems of two to four teams. We first consider the ‘line’
formation, which is shaped similarly to the smaller system
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(a) 2 Teams (4 Hubs, 8 Sensors Each) - Square
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(b) 3 Teams (4 Hubs, 8 Sensors Each) - Square
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(c) 4 Teams (4 Hubs, 8 Sensors Each) - Square

Fig. 5. Coverage and role understanding on large multi-robot systems in
square formation, with each team consisting of four hubs and eight sensors.
Figures 5(a)-5(c) show results from two to four teams, respectively.

seen in Figure 2(b), where hubs form a line and sensors
act as spokes. Quantitative results for this set of systems is
reported in Figure 4.

For multi-robot teams of this size, we see slightly different
results than previously. Across all three numbers of teams,
we see a steady increase in coverage area as λ increases, as
we would expect. However, in all three cases we see almost
no change in the system’s role understanding until λ > 0.6.
This is counter intuitive, as logically lower values of λ would
indicate higher coherence. This is likely due to the long line
of the four hub robots causing some sensors to be closer
to the centroid than the end hubs, resulting in classification
errors. For systems of this size and formation, maximizing
λ results in both the highest amount of area covered and the



highest role understanding.

D. Large Multi-Robot Systems - Square Formation

Finally, we again consider large multi-robot systems, with
each team consisting of 4 hubs and 8 sensors. Here, we
consider systems of two to four teams in the ‘square’
formation, where hubs maintain 90◦ angles from each other
(an example can be seen in Figure 2(c)). Quantitative results
for this set of systems are reported in Figure 5.

Here, we return to seeing role understanding results con-
sistent with the expectation of the λ parameter. Specifically,
we see the maximum role understanding when λ = 0,
indicating the multi-robot system is solely motivated on
moving to a coherent formation. However, this is also the
point with the lowest coverage area. For this set of systems,
we see that when λ = 1 we can maximize the coverage area
with only a small decrease from the highest level of role
understanding.

V. CONCLUSION

Multi-robot systems are crucial for effective disaster re-
sponse and efficient search and rescue. In order for teams of
robots to work alongside neighboring teams with the same
objective, they must behave in understandable ways while
working towards their mission. We introduce the problem
of controlling a multi-robot system in order to balance
accomplishing a mission with maintaining a comprehensi-
ble formation that neighboring teams can understand. We
propose a system of control laws for a heterogeneous multi-
robot system that generate movements either to increase
the sensor coverage area or follow a predefined formation.
Through simulation on a variety of multi-robot system sizes
and formations, we show the effects of different weightings
on both coverage area and role understanding.
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Korbayová, “Incremental development of large-scale human-robot
teamwork in disaster response environments,” in ACM/IEEE Interna-
tional Conference on Human-Robot Interaction, 2017.

[19] J. Cortés, S. Martinez, T. Karatas, and F. Bullo, “Coverage control for
mobile sensing networks: Variations on a theme,” in Mediterranean
Conference on Control and Automation, 2002.

[20] M. Schwager, J. McLurkin, and D. Rus, “Distributed coverage control
with sensory feedback for networked robots.,” in Robotics: Science
and Systems, 2006.

[21] S. G. Lee, Y. Diaz-Mercado, and M. Egerstedt, “Multirobot control
using time-varying density functions,” IEEE Transactions on Robotics,
vol. 31, no. 2, pp. 489–493, 2015.

[22] S.-k. Yun and D. Rusy, “Distributed coverage with mobile robots on
a graph: Locational optimization,” in IEEE International Conference
on Robotics and Automation (ICRA), 2012.

[23] N. Fung, J. Rogers, C. Nieto, H. I. Christensen, S. Kemna, and
G. Sukhatme, “Coordinating multi-robot systems through environment
partitioning for adaptive informative sampling,” in IEEE International
Conference on Robotics and Automation (ICRA), 2019.

[24] F. Amigoni, J. Banfi, N. Basilico, I. Rekleitis, and A. Q. Li, “Online
update of communication maps for exploring multirobot systems under
connectivity constraints,” in Distributed Autonomous Robotic Systems,
pp. 513–526, 2019.

[25] W. Luo and K. Sycara, “Minimum k-connectivity maintenance for
robust multi-robot systems,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2019.

[26] Y. Kantaros, M. Thanou, and A. Tzes, “Distributed coverage control
for concave areas by a heterogeneous robot–swarm with visibility
sensing constraints,” Automatica, vol. 53, pp. 195–207, 2015.

[27] X. Wang, S. Han, Y. Wu, and X. Wang, “Coverage and energy con-
sumption control in mobile heterogeneous wireless sensor networks,”
IEEE Transactions on Automatic Control, vol. 58, no. 4, pp. 975–988,
2012.


	Introduction
	Related Work
	Multi-Robot Systems in Search and Rescue
	Multi-Robot System Sensing and Control

	Approach
	Accomplishing the Mission
	Maintaining a Comprehensible Formation
	Balancing Mission and Comprehensibility

	Experimental Results
	Experimental Setup
	Small Multi-Robot Systems
	Large Multi-Robot Systems - Line Formation
	Large Multi-Robot Systems - Square Formation

	Conclusion
	References

