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Abstract—Effective multi-agent teaming requires knowledge-
able robots to have the capability of influencing their teammates.
Robots are able to possess information that their human and
other agent teammates do not, such as by scouting ahead in
dangerous areas. To work as an effective team, robots must be
able to influence their teammates when necessary and adapt to
changing situations in order to move to goal positions that only
they may be aware of, while remaining connected as a team. In
this paper, we propose the problem of multiple robot teammates
tasked with leading a multi-agent team to multiple goal positions
while maintaining the ability to communicate with one another.
We define utilities of making progress towards goals, maintaining
communications with followers, and maintaining communications
with fellow leaders. In addition, we introduce a novel regularized
optimization formulation that balances these utilities and utilizes
structured sparsity inducing norms to focus the leaders’ attention
on specific goals and followers over time. The dynamically learned
utility allows our approach to generate an action for each leader
at each time step, which allows the leaders to reach goals without
sacrificing communication. We show through extensive synthetic
and high-fidelity simulations that our method effectively enables
multiple robotic leaders to guide a multi-agent team to different
goals while maintaining communication.

I. INTRODUCTION

Members in multi-agent teams must be able to work collab-
oratively to accomplish tasks in order to accomplish multiple
simultaneous goals or to operate over large areas. In scenarios
such as disaster response, teams of human rescuers are able to
work together fluidly, utilizing leadership roles to accomplish
tasks. When robots join human teams, they must join into this
collective workflow [8]. Human teammates prefer that robot
teammates take proactive roles, operating as peers instead of
subordinates [36]. Robot teammates must be able to lead and
influence the team, even when teamed only with other robots.

The ability for robots to influence the behavior of their
team members is vital to the success of a wide variety
of real-world applications. For example, during a disaster
response scenario such as the one seen in Figure 1, robots
may have information that their teammates lack, such as the
locations of injured humans that they have found in a search
or the locations of immediate dangers that must be addressed
[10, 15]. Additionally, robots may not be able to explicitly
relay instructions to their teammates, as the robots may not
have authority to control their machine teammates, or civilians
being rescued may not have the training necessary to interact
with the robot [44]. In these situations, robots must have the
capability of influencing their teammates to follow them [22].
For example, a group of first responders can follow a drone
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Fig. 1. An illustrative example in disaster response applications to motivate
the problem of multiple robots tasked with leading other members in the team
to multiple goals while adapting to changing situations as well as maintaining
communication among sub-teams and also between leaders and followers.

they can see, and so the drone must behave in a way that
keeps it visible to its followers while progressing towards a
goal position, as illustrated in Figure 1.

One key challenge of effectively influencing teams is doing
so with multiple competing objectives and multiple leaders that
can affect team behavior. Several methods have been designed
that identify leaders within a multi-robot team [31], but they do
not address how leaders can affect the team. Recent research
has investigated both the leading of individuals [20], as well
as the leading [22] and herding [41] of teams of followers.
While effective, these approaches have been limited to leading
followers to single goals, and have not addressed the problem
of multiple goals or incorporated the use of multiple leaders.

The second critical challenge is maintaining communica-
tion among leaders and also between leaders and followers,
which is a necessary functionality for safety-critical scenarios,
such as disaster response. The maintenance of communication
within a multi-robot system or during deployment of a multi-
robot team has been approached with several recent methods
[4, 26]. However, the challenge of maintaining communication
while leading a team of followers to multiple goals has not
yet been addressed, either from the perspective of ensuring
leaders stay connected to their followers or ensuring leaders
stay connected to other leaders.

In this paper, we propose a principled approach to adaptively
lead a multi-agent team to multiple goal positions while
maintaining communication. We define the utility of various
actions that leaders can take, based on (1) making progress
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towards goals, (2) staying in communication with sub-teams
of followers, and (3) staying in communication with other
leaders. We then introduce a mathematical formulation based
on the unified framework of regularized optimization to find
weights that optimally balance these competing utilities, which
incorporates new structured sparsity inducing norms to focus
each leader’s attention on specific goals and sub-teams of
followers, as well as regularization terms to enforce temporal
consistency as time passes. Then, our approach identifies the
optimal actions for each leader at each point in time after the
optimization over these competing utilities, in order for each
leader to effectively influence a team of followers.

This paper presents three novel contributions:

o We introduce an essential but not well addressed problem
of influencing a team such that its members can be guided
to goal positions by leaders that maintain communication
with the followers as well as other leaders.

o We propose a principled approach with a novel mathemat-
ical formulation to address the problem by optimizing the
competing utilities to make progress towards goals while
maintaining communication, which integrates novel regu-
larization terms to focus leaders attention on select goals
and followers while maintaining temporal consistency.

o We introduce an iterative solver for this formulated objec-
tive, which is hard to solve due to equality constraints and
non-smooth terms. This solver is theoretically guaranteed
to converge to the optimal solution.

II. RELATED WORK
A. Robot Leading and Following

Collaborative robots require coordination among the robots
in a team, and many teams must operate with uncertainty [25]
or without previous coordination [38]. Although this problem
has been approached by collective means such as beacons [21],
pheromones [3], and graphs [18], it can be more effectively
enabled by the presence of leader and follower roles. Several
methods have been proposed to select leaders in a multi-robot
system, such as identifying agents with different capabilities
[16], basing leadership on knowledge of the environment [27],
adherence to a goal formation [31], or inferring leadership
based on the network topology of the multi-robot system [42].
After leaders in a multi-robot team have been determined,
they can be used to influence the remaining team members. A
number of strategies have been developed to enable a human to
directly influence a robotic swarm using leader agents, such
as managing followers’ positioning through ‘attractors’ [7],
affecting only followers orientation [12], or varying informa-
tion propagation methods from leaders to followers [2, 43].
Multiple approaches have been developed to manage the be-
havior of the follower agents in these scenarios, from potential
fields in simulation [5, 24] to physical robot following through
camera tracking [17] or steering by braking on towed robots
[19]. Leadership in robot teams simplifies many tasks, such as
collaborative transport [9, 32] and position deployment [1].

As it requires different approaches than leading teams of
other robots, the leading and influencing of teams of humans

or animals has seen much recent research. Influencing animals
to move to a goal state was introduced with the solution of
‘herding by caging’ [41], or surrounding the animal group
as the leader robots moved to the goal state, which required
precise control. Influencing humans has the additional compli-
cation of humans not always behaving like robots or animals
would [35, 40], though simulated models of groups of human
followers have been developed [24]. Similar to approaches that
identify a robotic leader, recent work has attempted to identify
the leader in a group of human followers and to lead the
group by influencing this single human [22]. In autonomous
cars, planning models have considered the effects that an
action would have on a nearby car [33, 34]. While leading
an individual human on foot has seen some research, such as
utilizing multiple robots [20], most work concerning individual
humans has seen the human as the leader, with robots learning
to follow by predicting trajectories [23, 37], even from in front
of the human [29].

Despite the breadth of research, most methods have focused
on single leaders or single goals. The problem of how to use
multiple robots to lead follower agents to multiple goals, while
maintaining communication, has not been fully addressed.

B. Communication Maintenance in Multi-Robot Teams

A key component of effectively leading a team, whether
it consists of humans, robots, or both, is the maintenance of
communication, both with followers and with other leaders.
While this has not previously been studied in a leader/follower
context, it has seen much work in the context of the deploy-
ment of multi-robot systems. Early work deployed robots as
relays to ensure that line of sight would not be interrupted, thus
maintaining visibility-based communication [39]. Similarly,
later work continued to employ the geometry of indoor spaces
as a constraint, which attempts to optimally assign a group of
robots that would be unable to fully deploy and maintain com-
munication [4]. Planning for deployment into a coordinated
formation has also used the constraint that communication
must be maintained [28]. Graph-based techniques have also
been used, where metrics like algebraic connectivity can be
utilized [13, 14, 30], or where a minimum edge connectivity
must be maintained [26].

Maintaining communication in a leader and follower context
is an important open problem. Communication maintenance
will allow a multi-robot team to continue coordinating as they
lead followers toward multiple goals, while also ensuring that
leaders stay connected with their followers and other leaders.
However, this challenge is not well studied yet in the problem
of leading multi-agent teams to multiple goals.

III. THE PROPOSED APPROACH

In this section, we introduce our novel approach to leading a
multi-agent team to multiple goal positions while maintaining
communication among the sub-teams. Specifically, we discuss
our problem formulation, the principled optimization method
to address the problem, and the optimization algorithm to solve
the formulated regularized optimization problem.



Notation. We denote matrices as uppercase bold letters and
vectors as lowercase bold letters. Given a matrix X = [z;;] €
R™*™_ we denote its i-th column as x; and its j-th row as xJ,
Given a vector y, its ¢-th element is denoted y;. The position of
the ¢-th leader is defined as p;, with the leader’s movements
denoted respectively as p$’ 7,; (towards the j-th goal), pl L
(towards the j-th follower), and pf i (towards the j-th leader).

A. Problem Formulation

We address the problem of multiple robot teammates tasked
with leading a team to multiple goal positions while maintain-
ing the ability to communicate with one another. We refer to
robots that perform the leading task and influence the team
as leaders, and other teammates who are influenced to follow
the leaders as followers. Leaders consider three utilities that
are gained by making progress towards the goals, maintaining
communication with a subset of followers, and maintaining
communication with other leaders in the team that lead other
followers, respectively.

Formally, we assume there exist G goals in an environment,
as well as NV leaders and F' followers. Each of the G goals is
modeled as a density function centered on g; for the ¢-th goal,
which is represented as ¢;(-) and returns a scalar value based
on g;. Each leader and follower has a position, defined as p;
for the i-th leader and f; for the ¢-th follower. Each leader is
able to take actions to move within the environment, and is
aware of the locations of the goals. Followers are limited to
only moving towards leaders and other followers, basing their
motion on potential field models [5, 22].

Both followers and leaders are only aware of others within
a communication distance R. Then, we introduce a graph G =
(V, €) describing the communication relationships among the
leaders and followers. V = {v1,...,vn4F} represents the set
of vertices, with each vertex corresponding to a leader located
at p or a follower located at f. £ = {e;;} is the set of edges,
where e;; is an edge between the i-th and j-th vertices, and
the magnitude of e;; represents the strength of this connection
(i.e., the smaller distance between vertices, the larger the edge
weight). Edges only exist if vertices are able to communicate:

1
eij = {Slst(v,;,Uj)

While our implementation uses the widely used circular com-
munication model [26, 28], other multi-robot communication
models computed from a pair of nodes can also be used.

We propose three utilities associated with leaders to decide
actions. The first utility R = [r;;] € RV*¢ is defined as the
utility for leaders moving towards goals, where r;; defines the
utility of the ¢-th leader moving towards the j-th goal. This
utility is based upon the derivative of ¢; with respect to p;,
which is denoted as p&', ;- Then, the goal utility is based upon
moving in the direction of this derivative, or mathematically:
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where dist(p;, g;) is a scaling factor and denotes the distance
between the i-th leader and the j-th goal.

Second, we define the utility Q = [g;;] € RV*F for leaders
moving in the direction of followers in order to maintain or
strengthen communications with their followers. Given G, we
represent this graph with an adjacency matrix A, where a;; is
equal to the edge weight e;;. Then, we compute the Laplacian
of the graph L = D — A, where D is the degree matrix. As
the second smallest eigenvalue (A2) of L corresponds to the
graph’s algebraic connectivity (i.e., an unconnected graph will
have A2 = 0, and a complete graph will have Ao equal to its
vertex connectivity [11]), we base the utility Q of maintaining
communication links on the eigenvector corresponding to this
eigenvalue, which is denoted as z € RN+F Each element z;
of z corresponds to a vertex v;. If two vertices are strongly
connected, their values z; and z; in this vector will be similar;
conversely, the less connected two vertices are the larger the
difference between z; and z; will be. We utilize this vector
to calculate the utility of leaders moving towards followers;
if a leader is already strongly connected to a follower, the
utility of moving to improve this connection will be low. The
follower communication utility for a leader p; moving towards
a follower f; can be computed by:

(21 — 2)°
Q=1 e ) @

Third, we define the utility S € RV*N for leaders moving
in the direction of other leaders in order to maintain commu-
nication within leaders leading other sub-teams of followers.
Similarly, we compute this leader communication utility based
on the values in z, which can be expressed as:

(21 — 2)?
dist(pi, P j)

Given the three defined utilities R, Q and S, the objective
in our problem formulation is to maximize the overall utility
U(R,Q,S), generating actions for leaders that enable them

to lead the team to multiple goals while maintaining commu-
nication.

S = [Sij] = “4)

B. Regularized Optimization for Leader Action Generation

As each leader has competing utility based on movement
towards goals, followers, and other leaders, we introduce a
formulation based on regularized optimization which finds the
optimal balance of these competing interests for each leader.
Additionally, we introduce sparsity inducing norms to control
which goals and followers a leader values, and regularization
terms to ensure that each leader’s utility balance is temporally
consistent.

We first introduce the initial objective function (R, Q, S):

g [WORI+[VeOQl+[UesSh )

where WOR represents the Hadamard or element-wise matrix
product and || -||; is the element-wise ¢1-norm, a summation of
the absolute values of matrix elements. W is a weight matrix
where w;; represents the weight that the ¢-th leader assigns to



the j-th goal, V is a weight matrix where v;; represents the
weight that the ¢-th leader assigns to the j-th follower, and U
is a weight matrix where u;; represents the weight that the i-th
leader assigns to the j-th leader. By finding values for these
weight matrices that maximize Eq. (5), our approach is able
to adapt to changing situations and maintain a balance of the
competing utilities of moving towards goals while maintaining
communication with followers and leaders.

We introduce constraints to limit the values in the matrices:

Wig=1y W2>0
Vip=1y V>0 (©6)
Uly=1y U>0

where 1 represents a vector of 1s of length N. These con-
straints restrict the weights such that the total weight assigned
to each agent sums to 1, in order to prevent unreasonably large
weights, and that all weights must be nonnegative.

The first sparsity inducing norm introduced is based on the
idea that each leader should ideally only value one goal at a
time; that is, a leader that is attempting to move towards two
goals at a time will make less progress than a leader that is
moving directly towards a single goal. To integrate this into our
objective formulation, we introduce a goal norm that induces
sparsity in an individual leader’s weights assigned to goals.
We do this in the form of the ¢5-norm on each row of W:

N

Wile =" w"| (7

n=1

where |wlls = \/Z}le |w;|2. Because each row in W is

constrained to be nonnegative and sum to 1, this norm has
an upper bound of 1 for w;, indicating that the i-th leader
is valuing only a single goal. This goal results in a lower
value for leaders that value multiple goals at once (e.g.,
[I[0.5,0.5]||2 < ||[0, 1]||2, and values in W are bounded by 1).
Adding this norm to our initial objective in Eq. (5) rewards
leaders that value a single goal much higher than the others.
Second, we want leaders to be focused on only a subset of
followers, such that multiple leaders are not attempting to lead
the same follower. For this we introduce the leader norm:

F
VI =" lvele (®)
f=1

where ||v||2 again indicates the ¢»-norm and in this case acts
on each column of V. This norm penalizes cases where more
than one leader has assigned weights to a single follower.
This norm adds to our objective function in Eq. (5), where
increasing the value of this regularization term should increase
the overall effectiveness of our approach.

Finally, we introduce the regularization term that enforces
temporal consistency between the weight matrices. This desire
for temporal consistency is based on the idea that if a leader
has selected a goal to move towards, it is inefficient to abruptly
switch to another goal. Thus the weights that leaders have at
time ¢ should be similar to the weights that leaders then obtain

at time ¢+ 1. We introduce three terms utilizing the Frobenius
norm to calculate the value of this change from the previous
time step:

T(W,V.U) = |[W - W[ +[[V - V| + U~ U7
€))

where W, V, and U denote the optimized weight matrices
from the previous step and W% = >, 3=, |wy]* =
tr(WW ). The three terms combined in 7 also act as penalty
terms to the objective in Eq. (5).

Our final problem formulation integrates all of these in-
troduced terms into the following convex objective function,
under the unified framework of regularized constrained opti-
mization:

max [WOR[:+[[VoQ[:+[UoS|:
W,V,U

+1lWlle + 2%l Vie —wT(W, V., U)
S.t. W].G = ]-NaV]-F = 1N7U1N = ]-N;

W >0,V>0,U>0. (10)

where ~;,7 € {1,...,3} are hyperparameters controlling the
importance of the defined regularization terms.

After computing W, V, and U that represent the optimal
allocation of the identified utility (for example, an element
w;; € W weights the corresponding utility 7;; € R, with
V weighting Q and U weighting S), we use these weight
matrices to identify the optimal action for each leader.

As described earlier, p§*, ; 1s the movement of the ¢-th leader
towards the j-th goal. We also consider the movement of the
i-th leader towards the j-th follower, defined as pZF Lo and the
movement of the i-th leader towards the j-th leader, defined
as p-, ;- The overall movement p; for the i-th leader is based
on a combination of these movements, weighted by W, V,
and U:

G F N
Di = Y wypl + Y oyPl; + > wpl,; (1D
j=1 j=1 j=1

This overall movement update p; is scaled to unit length and
added to the previous position p; to arrive at the new position:

pi

e (12)
[[Dsll2

Pi =p; +

C. Optimization Algorithm

The formulated objective in Eq. (10) is convex, yet hard to
solve due to equality constraints and non-smooth regulariza-
tion terms. We propose an iterative algorithm, which is proven
to converge to the optimal solution.

First, we note that ||[W ® R||; is the sum of the entries of
the Hadamard product of W and R.. This can be rewritten as
the inner Frobenius product, which is equal to the trace of the
matrix product of W' and R:

[WoRJ|; = (W,R)r=tr (W'R) (13)



We then incorporate this as we rewrite our objective function
as a minimization problem:
mn —tu(WR) —or(VQ-u(U'S
nin —w(WR) e (V'Q) - u(UTS)

—nlWlle =lVllz +T(W, V., U)
S.t. W].G = ]-N,V]-F = 1N7U1N = 1N7

W >0,V>0,U2>0. (14)

To ensure we satisfy our equality constraints, we introduce a
solution based on the Augmented Lagrange Multiplier (ALM)
method, which solves problems of the form

min f (X) s.t. h(X) =0

by rewriting constraints as penalty terms to arrive at a gener-
alized ALM form of

1
J 00+ 5Ih 0 + A (1)
where p is a penalty coefficient and A is a Lagrangian
multiplier. We also introduce the additional constraints of
A =W,B =YV, and C = U. With these new variables,
we can write our final objective in generalized ALM form as
i ~r(W'R) —r(VIQ)—tr(U'S
wyliine rW R —r(ViQ) i (UTS)
~nlWlle =2Vl + T (W, V,U)

K Ly M 1 2
—||Algs —1 - —||W—-A+ —-A
+2|| G N+’u 1H2+2H +M 2|7

K Ly M 1 2
—||Blp —1 -2 —||lV-B+ —A
+ 2” F N+M 3ll2 + 2” +M 4l

M Ly M 1 2
—|[Cly —1 - “jU-C+—-A
+oICy = 1n + 2 Asllz + 5 + Al

st. W >0,V >0,U>0. (16)

and find a solution by iteratively solving for W, V, U, A,
B, and C. We initialize W = [w;;] = £, V = [v;] = +,
U = (] = % A =W,B =YV, and C = U. This approach
is defined in Algorithm 1 and detailed below.

Line 5. First, we solve for W by taking the derivative of

Eq. (16) w.r.t. W and setting it equal to O:
— R+ 7 DW 4 293W — 293 W + W — A + Ay = 0
after rearrangement, we update W by
W = (11D + 2v31 4+ pI) (R + 295 W + pA — Ay)
W = max(W,0) (17)

where D € RV*¥ is a diagonal matrix with the i-th diagonal
element as and where max(W, 0) satisfies the W > 0
constraint.

Line 6. Next, we solve for V by taking the derivative of
Eq. (16) w.r.t. V and setting it equal to O:

— Q-7 VD 423V =293V 4 uV — B+ Ay =0

1
2wz

where after rearrangement we see that the update to V is

V = (Q+ 293V + uB — Ay)(ul + 2751 — ;D) !

V =max(V,0) (18)

where D € RF*T is a diagonal matrix with the ¢-th diagonal
element as m and where again max(V,0) satisfies the
V > 0 constraint.

Line 7. Next, we solve for the third weight matrix U by
again taking the derivative of Eq. (16) w.r.t. U:

—S+273U - 273U + U — uC + Ag =0

and rearranging to show that the update to U at each iteration
is

U = (293 + pI) 7S + 273U 4 uC — Ag)

U = max(U,0) (19)

where again we satisfy the U > 0 constraint with max (U, 0).
Line 8. Next we solve for the first introduced variable A,
where the derivative of Eq. (16) w.r.t. A is:

pA1G1L — pAn1s + M1 — yW + A — Ay =0
and the update to A at each iteration is:

1 1
A=W+ ;AQ +1n15 - ﬁ)\llg)(l +1c15)7 (20)

Line 9. Similarly, we show that the derivative of Eq. (16)
wrt. B is:

pBlply — plnl)h + X3l —pV+uB— Ay =0

and the update to B is:
1 1
B=(V+1yl; — ;m; + ;A4)(I +1p15)7 @21

Line 10. And that the derivative of Eq. (16) w.r.t C is:
pCIN1Y — pdn1N + X510 +puC — U —Ag =0

so the update to C at each iteration is:
1 1
C=(U+1n1} — ;A51L - ;Aﬁ)(l +1x14)7" (22)

Lines 11 — 17. Finally, we update each of the Lagrangian
multipliers A1, Ao, A3, Ay, A5, and Ag by the generalized
formula of A = A+ ph (X), with the specific updates for each
multiplier in Algorithm 1, and update the penalty coefficient
by u = pu, where p is chosen such that 1 < p < 2.

Convergence. Our optimization algorithm converges to the
optimal solution. To prove that Algorithm 1 converges, we first
present a lemma:

Lemma 1: The generalized ALM approach, when applied
to problems of the form in Eq. (15), reduces the objective value
of the the constrained optimization problem at each iteration
and converges to the optimal solution when 0 < p* < pkF+!
is satisfied for every iteration k [6].

Using Lemma 1, we can prove the following theorem:

Theorem 1: Algorithm 1 iteratively decreases the objective
value of the regularized optimization problem in Eq. (10) and
converges to the global optimal solution.

Proof: To begin Algorithm 1, our objective function in
Eq. (10) is converted into the generalized ALM format of Eq.
(15). In Line 1 of Algorithm 1, we define x° > 0. Thus at



Algorithm 1: Our Algorithm to Solve Eq. (10).

1: Set 1 < p < 2 and k = 0. Initialize the penalty coefficient
/,LO and the multiplier terms A A9, A, AL, NG, and Ag.
Initialize each weight matrix W, V, U, and the introduced
matrices A, B, and C.

2: repeat

1
2[lwi iz ) ’
1

2Vl )
5 Compute W**+1 by Eq. (17).
6 Compute V*1 by Eq. (18).
7 Compute U**! by Eq. (19).
&

9

3 Compute D = diag
4: Compute D= diag

Compute A**! by Eq. (20).

: Compute B**! by Eq. (21).
10: Compute C**1 by Eq. (22).
11: | Update Ay by At = A% + uF(Alq — 1p).
122 | Update Ag by AXTY = A% + /*(W — A).
13: Update A3 by ATt = X5 4+ ¥ (B1p — 1n).
14: | Update Ay by A¥H = A% + 4*(V — B).
15: Update A5 by ATt = \E 4 /% (C1y — 1n).
16: Update Ag by AKTT = A% + 4% (U - ©).
17: Update p by p*+! = pu.

=k+1

19: until convergence;

k =0, Lemma 1 holds. Now, we prove by contradiction that
Lemma 1 holds for every set of iterations k£ and k + 1.

First, we consider the possibility that for some iteration k,
pktl < pkUIf this case were true, then (p*1) / (p*) < 1.
By rearranging Line 17, (u**') / (u*) = p, which would
mean that p < 1. In Line 1 p is initialized such that 1 <
p < 2 and the value of p is never altered in Algorithm 1,
so this case cannot occur. Next, consider the possibility that
for some iteration k, ,u’“+1 = ,uk . If this case were true, then
(1*+1) / (u¥) =1 = p. Again, p is initialized such that 1 <
p < 2 in Line 1 and its value is never altered, so the case that
puFtt = 1% could not occur.

As pFt1 = pF cannot occur and pFt! < cannot
occur, then it follows that ;/** > . As this holds for any
given iteration k, Lemma 1 is satisfied at each iteration and
Algorithm 1 converges to the optimal solution. [ |

Complexity. The computational complexity of our approach
is dominated by Lines 5 — 10. We note that Lines 3 and 4 are
computed in linear time, as are the multiplier and coefficient
updates in Lines 11 — 18. Each of Lines 5 — 10 utilizes a
matrix inverse and multiplication, with respective complexities
of O(N2G + N3), O(NF? + F3), O(2N3), O(NG? + G3),
O(NF? + F3), and O(2N3) based on the dimensions of
the matrices involved. As a result, the overall computational
complexity of our described approach in Algorithm 1 is
O(X?) where X = max(N, G, F).

1

IV. EXPERIMENTAL RESULTS
A. Experiment Setup

We evaluate our approach using extensive synthetic simula-
tions as well as a multi-robot simulator that incorporates Unity

for high-fidelity graphics with ROS for multi-robot control. We
utilize three metrics for performance evaluation:

1) Time Steps is the average number of time steps required
for followers to reach goal positions. We cap this at a
maximum of 500 (i.e., if followers have not all reached
goals at the 500th time step, we end the simulation).

2) Average Follower to Goal Distance is the average

distance from each follower to the nearest goal:
Zf:l dist(f; ,g;) .
Si=l——2= where g; is the goal nearest to f;. The
average initial follower to goal distance was 62.6, and
the optimal final value would be O (as this indicates all
followers have reached a goal).

3) Average Goal to Follower Distance is the average
distance from each goal to the nearest follower:
S8 dist(gi f5) .
===t where f is the follower closest to g;. The
average initial goal to follower distance was 64.3, and
again the optimal final value is O (as this indicates each
goal was reached by a follower). In cases where only a
subset of goals are reached (e.g., if three goals exist, but
leaders only guide followers to two of the goals), then
the follower to goal distance could be O while the goal
to follower distance is still high.

We compare to three approaches: (1) a random approach
[22, 27] as it is often used to provide a grounding for the other
approaches, where each leader moves in a random direction
at each time step; (2) a greedy approach, where each leader
moves directly towards the nearest goal position; and (3) a
baseline approach, where we set v; = 2 = 3 = 0 in order
to evaluate the effectiveness of the described regularization
terms in our formulation.

B. Results on Synthetic Simulations

We conduct synthetic simulations to provide thorough quan-
titative results based on different experiment setups. Followers
and leaders were created at random initial positions, utilizing
a uniform Gaussian distribution centered in the middle of the
environment. Goals were also randomly created, based upon a
uniform distribution describing a circle centered on the middle
of the environment with a radius of 60.

We evaluate Scenario A with three leaders, nine followers,
and three goals (N = 3,F = 9,G = 3). Figure 2 shows a
sample synthetic simulation. The initial state of the system is
shown in Figure 2(a), where the agents are generated in the
middle of the environment and the three goals are generated
on the outskirts of the environment. Figure 2(b) shows an
ensuing time step, where each leader has begun to make
progress towards a goal. It is observed that the left and right
leaders have not headed directly for their nearest goals, but
have also moved up to ensure they maintain communication
with the middle leader. This time step also shows the initial
follower team splitting up to follow individual leaders. Figure
2(c) again shows a later time step, where the middle leader
has nearly reached a goal state and the left and right leaders
have moved more in the direction of their nearest goals. Figure
2(d) shows the final state. At this point, the middle leader and
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Fig. 3. Quantitative results of follower to goal distance and goal to follower
distance for two simulations.

associated followers have reached a goal state. Both the left
and right leaders are near goal states, but in order to maintain
communication with the middle leader they will not progress
further.

Figure 3(a) shows the follower to goal and goal to follower
distances over time for the simulation shown in Figure 2. As
leaders attempted to reach all three possible goals, these two
distances track very closely. We can see in this graph that the
slope is slightly flatter at the beginning of the simulation, as
leaders identify what goals to progress towards and followers
start tracking leaders. We also see the near the end of the
simulation progress slows, as the left and right leaders cease
progressing towards their goals. Figure 3(b) shows these
distances over time for a simulation where leaders moved
to only two out of three goals, with two leaders moving to
a single goal, leaving one unapproached. Here, the follower
to goal distance decreases linearly, as followers still move
towards their local leaders at a constant rate. However, the
goal to follower distance does not approach zero as one goal
is not approached, and so as followers settle at the other two
goal positions this value stabilizes at a level above zero.

Then, we also evaluate Scenario B with N = 4, F = 16,
and G = 4; and Scenario C with N = 5 F = 25, and
G = 5. These varying scenario sizes allow us to evaluate our
approach as the number of team members present changes.
Figure 4 shows the quantitative results for each approach
on 20 simulations of each scenario. In Figure 4(a) we show
the average number of time steps required for a simulation
to complete. We see that our full approach significantly
outperforms both the baseline version as well as the greedy
and random methods. The full approach takes progressively
longer as the scenario size increases, as this increases the
chance of not being able to reach all goals. Our baseline
approach is relatively consistent, but significantly worse than
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Sample snapshots from a synthetic simulation. Leaders are marked by black squares, followers by green triangles, and goals by red circles.

the full approach, showing the value of the introduced terms.
The greedy approach is relatively successful with the smaller
number of robots in Scenario A, but performs significantly
worse as the scenario size grows. This suggests that with a
small number of followers, progressing directly towards goals
without attempting to maintain communication can still be suc-
cessful sometimes, but as the numbers of followers rises this
becomes less likely. The random method consistently performs
poorly, with only a single simulation for each scenario not
reaching the maximum 500 time steps.

Figure 4(b) shows the average follower to goal distance at
the end of each simulation. Again, we see that our approach
performs consistently well, with average distances below 10
for all three scenarios. The baseline approach performs the
second best, showing the importance of the regularization
terms. The greedy method again declines in performance as
the size of the scenario increases, showing again that larger
numbers of followers cannot be led by leaders that do not
attempt to maintain contact. Finally, the random method is
again the worst, actually increasing the distance between
followers and goals in all three scenarios.

Figure 4(c) shows the average goal to follower distance
at the end of each simulation. Here, we see similar patterns
as the follower to goal distance, where our full approach is
consistently the best performer, and the baseline version is
less effective but still outperforms the greedy and random
approaches. Our approach does not decrease the goal to
follower distance as effectively as the follower to goal distance.
In some simulations, leaders are omitting individual goals, and
leading followers to a subset of the multiple goals possible.

C. Results on High-Fidelity Simulations

We further evaluated our approach in a high-fidelity multi-
robot simulator in order to implement the approach in ROS and
understand its effectiveness in a more realistic environment.
Figure 5 shows sample snapshots of a multi-robot team that
must proceed through the urban environment to goal positions.
In this simulation, the quadrotor robots are leaders and the
wheeled Husky robots are followers.

Figure 5(a) shows the initial positions of the robots, with all
eight being generated near a single point. In this frame, one
goal position is straight across the intersection, and a second
goal position is down the road that branches off to the left.
Figure 5(b) shows the multi-robot team as it progresses into
the intersection. Each leader has begun to head in the direction
of an individual goal, and a subset of the Husky robots is
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following each leader. Figure 5(c) shows one team arriving
at a goal position. In this frame, the remaining robots can be
seen in the top left corner at the other goal position. Similarly,
Figure 5(d) shows this second team at their goal position, with
the first team being seen in the background in the top right,
at the first goal position.

D. Discussion

Runtime. Since the optimization problem solved in each it-
eration in Eq. (16) is convex, the proposed algorithm converges
to the global optimal solution very quickly. In practice, for a
problem with 5 leaders, 25 followers, and 5 goals, Algorithm
1 uses on average < 50 iterations to converge. When running
on a computer with an i5 processor and 8 Gb memory, our
approach executes at a high speed of about 170 Hz for the
same problem.

Scalability. Figure 6 demonstrates average follower to goal
distance and goal to follower distance for the three evaluated
scenarios as well as scenarios with 10 and 20 leaders. Each

(c) Goal 1 (d) Goal 2

Example snapshots from a high-fidelity multi-robot simulation.

scenario (with G = N and F = N?) was simulated 100 times.
Figure 6(a) shows that our approach decreases follower to goal
distance for all system sizes, but that larger systems do not
preserve this low distance. Figure 6(b) reports a similar effect,
where goal to follower distance decreases consistently for
smaller systems. However, as the number of goals increases,
the likelihood of a goal being ignored increases as well, and so
larger systems do not show a consistent decline in this metric.

V. CONCLUSION

In this paper, we introduce the research problem of multiple
robots tasked with leading other teammates to multiple goals
while maintaining communication. We introduce a principled
method based upon regularized optimization to learn the opti-
mal balance of competing utilities, utilizing sparsity-inducing
norms to focus leaders on specific goals and followers and
regularization terms to enforce temporal consistency as robots
progress through the environment. We use the learned balance
of utilities to generate actions for each leader at each time step,
which allow leaders to adaptively make progress towards the
goal positions without losing communication both with follow-
ers and fellow leaders. The experimental results have shown
that our approach enables robots to lead multi-agent teams,
simultaneously progressing to multiple goals and maintaining
communication.
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